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a b s t r a c t

We consider a composite package formed by two curved external Euler-Bernoulli beams, which sand-
wich an elastic core with negligible bending strength but providing the shear coupling of the external
layers. This coupling considerably affects the gross response of the composite structure. There is an
extensive literature on straight sandwich beams of this type, but very little attention has been paid to the
effects of curvature. Here, an analytical linear elastic model is proposed for beams with arbitrary variable
curvature. Equilibrium equations and boundary conditions are obtained through a variational approach.
Useful simplifications are possible for the case of moderately curved beams and beams with constant
curvature.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Three-layered sandwich structures are commonly used in
modern building, aerospace, aeronautical, automotive and naval
constructions. They are composed by two external sheets and an
inner core, which usually has negligible bending stiffness, but
provides the shear coupling of the external layers. Optimal designs
can be obtained by choosing different materials and geometric
configurations of the face sheets and core. Applications in this
category may range from structural insulating panels, consisting in
a layer of polymeric foam sandwiched between two layers of
structural board (usually sheet metal, plywood or cement), to wood
elements made of layers glued together, arriving at steel beams
supporting concrete slabs connected by ductile studs.

The type of sandwich that will be considered here is particular.
The external layers are supposed to have noteworthy axial and
bending stiffness, whereas the inner layer produces their shear-
coupling. In other words, the role of the inner core is that of
providing shear stresses that contribute to the gross bending
stiffness of the composite package, keeping unchanged the relative
distance between the external layers. Such a scheme fits to a
number of cases. An example is represented by adhesive-bonded
beams, where the thickness of the interlayer is so small that the
variation of its height can be neglected. In general, when the outer
layers are quite thick, the change in curvature due to bending

remains moderate even under concentrated loads, because these
are “diffused” in the softer interlayer limiting its strain in trans-
versal direction. The required properties can also be obtained with
anisotropic cores, for which the elastic stiffness in the out-of-plane
direction is much higher than the in-plane stiffness: an example is
honeycomb cores, which may be considered rigid in the out-of-
plane direction and flexible at right angle to that.

The modeling of composite laminated structures with a “soft”
core is one of the most active research fields of the last decades,
since an accurate stress analysis is required to design structural
parts. Hence, several theories have been developed to describe the
structural behavior of sandwich beams [1,2]. In particular, the well-
know “First-Order Shear Deformation” approach [3], based on the
assumption that planes normal to the midplane remain straight but
not necessarily normal to it after deformation, has been followed by
many authors in the last decades (see, among others, [4e6]). This
theory usually provides good results in terms of maximum
displacement under appropriate choice of the shear rigidity. The
key role played by the interlaminar shear stress on the response of
the laminate composite was pointed out since the Sixties, thanks to
the contributions by Pagano [7e9] and Reddy [10,11].

The effect on the deformation of the out-of-plane strain of the
interlayer can certainly be of importance and, indeed, it has been a
subject of recent research (see Ref. [12] and the list of references
therein reported). However, if one assumes that the thickness of the
interlayer remains unaltered, the problem is greatly simplified and
reduces to the assessment of the degree of shear coupling offered
by the inner core. The first analytical model for a composite beam
with shear interaction is commonly attributed to Newmark et al.
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[13], who investigated the response of composite steel-concrete
beams connected by elastic studs. Since then, several studies
[14,1,2,15] have analyzed the effects of the interlayer properties for
different compositions of the laminated package and geometries.

Although the model problem considered here is general, it can
be conveniently specialized to the case of laminated glass [16]. This
is a composite structure manufactured by bonding two or more
thick layers of glass together with thin layers of polymer, to create a
single composite sheet widely used in architecture thanks to its
transparency, strength and safe post-glass-breakage performance
[17]. The polymeric interlayers are certainly too soft and thin to
present flexural stiffness per se, but they can provide shear stresses
that produce the glass plies interaction [18]. Moreover, since the
interlayer is much thinner that the glass plies, the variation of its
thickness due to transversal actions is negligible. Of course, the
degree of shear coupling depends upon the shear stiffness of the
interlayer [19]. The problem has been considered by many authors,
both from the experimental (see, among other [20,17,21]) and the
analytical point of view. Important contributions concerning
laminated glass beams can be found in Refs. [22e27], while other
works have focused on laminated glass plates [28e35]. Particular
attention has been paid to the buckling behavior of laminated glass
(see, for example, [36e40]) and to hybrid laminated glass units
[41,42].

All the aforementioned references consider flat laminated glass,
but in recent years there has been a deep interested in curved el-
ements due to the developing, as an architectural trend, of the use
of free form design for curved transparent façades and roofs.
Curved sandwich panels are also used in aerospace engineering and
e.g., for inlet cowl panels, fuselage glove of space shuttle orbiter,
certain landing gear doors [43,44]. Several studies, mainly dealing
with the numerical aspects of the modelling, have been performed
since the Nineties [45e47]. Other important contributions, which
consider curved laminated beams composed by perfectly bonded
plies with considerable bending stiffness, have been published in
recent years [48e50]. A fundamental contribution has certainly
been the article by Frostig [51], in which an analytical model is
presented for the case of three-layered beams, with constant cur-
vature, composed by two thin external layers, with negligible
thickness (with respect to the radius of curvature) bonded by a
thick and soft transversely-flexible core. The case considered here is
somehow dual, because it deals with sandwich curved beams with
thick external plies bonded by a transversely-stiff and shear-
resistant core, which is supposed to maintain unaltered its thick-
ness during the deformation. To our knowledge, similar problems
have been considered previously only in Ref. [52], but with an
approximate description of the kinematics of deformation of the
layered beam and under the hypothesis that the curvature is con-
stant and the loads are purely radial.

The plan of the article is the following. First, in Section 2, the
kinematics of monolithic curved beams is briefly recalled, while in
Section 3 the equilibrium equations for the composite package are
derived through energy minimization. From the general treatment,
we show how various hypotheses about the curvature can lead to
noteworthy simplifications. In fact, in Section 4, the governing
equations are specialized to some specific conditions of practical
interest, such as the case of constant curvature and the case of
moderate arbitrary curvature, i.e., the case inwhich the thickness of
the beam is infinitesimal with respect to the radius of curvature.

2. Review of curved beam theory

Before dealing with curved layered beams, it is convenient to
briefly recall the basic equations for a monolith. Many articles deal
with two-dimensional curved beams [53,54,47,55], focusing on

particular aspects such as, for example, the vibrations of curved
beams of arbitrary shape lying in a plane [56e58] or the response of
thin-walled curved beams of open section, including buckling and
large displacement [59e61]. Other contributions discuss the
deformation of arbitrarily curved and twisted three-dimensional
curved beams, both from the analytical [62e64] and the numeri-
cal [65,66] point of view. For the case at hand, let the curve G,
plotted with dashed line in Fig. 1, represent the reference fiber of a
plane curved beam, i.e., a beam with undeformed axis lying on a
plane, usually associated with the locus of the centroids of its cross
sections but here considered arbitrary. Let s represent a curvilinear
abscissa parameterized by arc length, and introduce the local
reference system identified by the unit-vectors t(s) and n(s),
respectively tangent and normal to G, with t(s) oriented in the di-
rection of increasing s and n(s) pointing towards the center of
curvature. The Frenet-Serret's equations [67,68], describing the
movement of a frame system along the axis through the tangent,
normal and binormal vectors, may be used to describe the kine-
matics of curved beams [64]. For the case of a plane beam one has

dnðsÞ
ds

¼ �tðsÞ
RðsÞ;

dtðsÞ
ds

¼ nðsÞ
RðsÞ; (2.1)

where RðsÞ is the radius of curvature of G at s. Any point x of the
beam is identified by the pair (s, r), being r the distance from G in
the direction of n(s).

2.1. Displacement and strain fields

The in-plane displacement of x ¼ (s, r) can be expressed in the
form

uðs; rÞ ¼ uðs; rÞtðsÞ þ vðs; rÞnðsÞ; (2.2)

and, recalling Frenet's formulas (2.1), the strain tensor of a point of
coordinates (s, 0) can be written as

εðs;0Þ ¼ Vuðs;0Þ þ VuTðs;0Þ
2

¼
�
u;sðs;0Þ � vðs;0Þ

RðsÞ
�
t5tþ

�
uðs;0Þ
RðsÞ þ v;sðs;0Þ þ u;rðs;0Þ

�
� n5tþ t5n

2
þ v;rðs;0Þn5n;

(2.3)

where comma denotes partial differentiation with respect to the
indicated variable. A more accurate description of the displacement
and strain fields for planar curved beams may be found in Refs.
[69,55].

Identify now an orthogonal curvilinear reference system on the
beam, composed by a family of lines normal to G, coinciding with

Fig. 1. Longitudinal fiber and local reference system for a plane curved beam.
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