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a b s t r a c t

Time resolution is the most important parameter of photon detectors in a wide range of time-of-flight
and time correlation applications within the areas of high energy physics, medical imaging, and others.
Silicon photomultipliers (SiPM) have been initially recognized as perfect photon-number-resolving
detectors; now they also provide outstanding results in the scintillator timing resolution. However,
crosstalk and afterpulsing introduce false secondary non-Poissonian events, and SiPM time resolution
models are experiencing significant difficulties with that.

This study presents an attempt to develop an analytical model of the timing resolution of an SiPM
taking into account statistics of secondary events resulting from a crosstalk. Two approaches have been
utilized to derive an analytical expression for time resolution: the first one based on statistics of
independent identically distributed detection event times and the second one based on order statistics
of these times. The first approach is found to be more straightforward and “analytical-friendly” to model
analog SiPMs. Comparisons of coincidence resolving times predicted by the model with the known
experimental results from a LYSO:Ce scintillator and a Hamamatsu MPPC are presented.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade silicon photomultipliers have demonstrated
rapid and significant progress in becoming detectors of choice for a
wide range of low light level applications. Initially recognized as a
proportional detector, competitive with PMTand APD due to superior
photon number resolution, SiPM has also appeared to be a rapidly
emerging time-of-flight detector, first of all for Cherenkov light and
short scintillation pulses [1–4].

One of the most demanded applications of SiPMs is the detection of
511 keV photons produced by LSO-based scintillator crystals due to
high practical interest in the development of a new generation of TOF
PET scanners. This application appears to be in a proper alignment with
the key advantages of SiPM technology as it requires both good energy
and time resolution of short light pulses. A remarkable progress has
been seen in the time resolution of LSO scintillation detection from
1.5 ns FWHM in 2005 [5] to 108 ps FWHM [6] and now targeting to be
below 100 ps [7,8]. It should be noted that in the same time period,
single photon time resolution (SPTR) of SiPM has not been considerably

improved upon, namely a value of 123 ps FWHM was reported for the
MEPhI/Pulsar SiPM in 2003 [1] vs. 120 ps FWHM reported for the
AdvanSiD SiPM—the best one from a representative set of modern
SiPMs in 2012 [9] of the same area 1�1mm2. Indeed, in a recent
study of fundamental limits of scintillation detectors, a photoelectron
detection rate (a mean number of photoelectrons Npe per a scintillation
decay time τd, i.e. Npe/τd) is found to be a much more influential factor
affecting time resolution than an SPTR, optical transport jitter, and
single electron response (SER) rise time [10].

However, the results and conclusions of this study have inherent
limitations in clarity of observed causal relationships and its
generality because it is based on Monte Carlo simulations as well
as many others in this area. Obviously, looking for the best tool for
such studies, it makes sense to try to establish an analytical model
of SiPM response and statistics.

SiPM response is a very specific and much more complicated
process to analytically model than that of conventional PMT, APD,
and PIN detectors typically used in TOF applications. High crosstalk
and afterpulsing, limited number of pixels and relatively long pixel
recovery time results in non-Poissonian statistics and non-linearity
of the SiPM response. TOF techniques utilise as small triggering
threshold as possible and are focused on the early phase of SiPM
response acquisition (from a single to tens of photoelectrons arriving
in a sub-nanosecond time scale), a non-linearity is assumed to be
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negligible as well as an afterpulsing effect. In contrast, crosstalk
generates false secondary single electron pulses with considerable
probability (up to 50% at high overvoltages used to be sought-after
for the best time resolution) and almost instantly with the primary
ones, and it should be properly taken into account in any model.

However, most analytical models experience significant diffi-
culties in accounting for multiple crosstalk events. For example,
rather comprehensive models of SiPM time resolution are limited
by assumptions either that only one crosstalk event could be
produced by a single primary event [11] or that the primary fired
cell could initiate crosstalk events in no more than in three
neighbour cells aside from the primary one [12].

At the same time, an analytical approach has been found to be a
powerful tool to derive relatively simple and realistic models of
crosstalk and afterpulsing processes as a geometric distribution
chain and branching Poisson processes [13,14] as well as to include
these results into analytical models of SiPM response statistics and
photon number resolution using a total excess noise factor
approach [15]. Initial thoughts regarding possibility to derive an
analytical expression of SiPM time resolution combining analytical
results on the total excess noise factor of SiPM and on the mean
SiPM response dynamics have also been recently discussed [16].

Therefore, the motivation of this study is to try to move as far as
possible into advanced analytical modelling of SiPM time resolu-
tion with crosstalk utilizing in some extent previous results
pointed above.

2. Method

2.1. Approach based on statistics of independent detection times

Modelling of time resolution of scintillation detectors with
photomultiplier readout has been in active progress since the
1950s due to its high practical importance [17–19].

According to the well-known approach, a mean μout and
standard deviation σout of photomultiplier output response with
some external electronic noise σe has to be derived, and, in the
case of the leading edge discriminator technique a threshold D is
used for the output pulse detection, the time resolution σt is
estimated in a threshold crossing time TD as

σt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σout2þσ2e

p
dμout=dt

�����
μout ðt ¼ TDÞ ¼ D

: ð1Þ

Applying probability theory of random processes to detection
of a photon signal by a photomultiplier, the output response could
be considered as the filtering of a marked point process of
detected events (photons) by the instrumental response function
(IRF i.e. SER pulse) [20].

A point process is a series of events represented by Dirac delta
functions δ(t�ti) where event times ti (i¼1,…,N) are independent
identically distributed (i.i.d.) random variables and N is a random
number of events in a given time interval (Fig. 1a). Intensity of a
point process λ(t) is defined as a mean event rate in an infinite-
simal time interval at time t. Marked (often called amplified) point
process Xin(t) is an advanced consideration of a point process with
i.i.d. random amplitudes (marks or amplifications) Ai of events
(Fig. 1b).

If every event i of a marked point process produces an output
response of non-random temporal shape and with an amplitude
proportional to Ai then an output response is a random function
Yout(t) with some mean and variance, and it is considered as a
result of filtering of a marked point process by the instrumental
response function h(t) (Fig. 1c). Filtering represents a convolution
of the input and response functions. For example, the most

common case of filtered marked Poisson point process is described
as the following:

XinðtÞ ¼ ∑
N

i ¼ 1
Ai � δðt�tiÞYoutðtÞ ¼ ∑

N

i ¼ 1
Ai � hðt�tiÞ

E½YoutðtÞ� ¼ E½Xin�nE½h� ¼ A� λnh
� �ðtÞN ¼

Z 1

0
λðt0Þdt0

Var½YoutðtÞ� ¼ COV½Xin�nCOV½h�ðt�t0Þ
��
t0 ¼ t

¼ A
2 �

 
1þVar½A�

A
2

!
� λnh2
h i

ðtÞ: ð2Þ

where the asterisk sign (n) is used to define a convolution of
adjacent functions.

An expression for the variance (2) is well-known as the
Campbell theorem.

Adapting (2) to light pulse detection by SiPM, it is convenient to
substitute some denotation and rewrite these results as follows:

λðtÞ ¼Npe � ρphnρsptr
� �ðtÞ

E½VoutðtÞ� ¼ Vser � λnh
� �ðtÞ

Var½VoutðtÞ� ¼ V
2
ser � ENFgain � λnh2

h i
ðtÞ; ð3Þ

where Npe is a Poisson distributed number of photoelectrons per
light pulse, ρph is a probability density function of photon arrival
times ti, ρsptr is a probability density function of a SiPM jitter
(SPTR), Vout(t) is an output response voltage, Vser is an amplitude of
SER pulse, and ENFgain is an excess noise factor of SiPM gain.

However, being based on a Poisson point process, this model
provides rather simple expressions (3), which could be relevant for
APD and PMT (with low afterpulsing), but it does not consider
non-Poissonian effects.

2.2. Advances in non-Poisson point process with correlated events

Looking for a chance to take into account non-Poissonian
effects, let us turn to an advanced theory of random processes.

The main characteristics of non-Poissonian point processes
Xin-n(t) have been well studied and analytically expressed with
respect to the specific cases of our interest [21].

The first case is related to the randomness in an intensity
function λ(t) which corresponds to a double stochastic Poisson
distribution of generated photons. It allows accounting for the
intrinsic scintillator resolution δsci as an excess variance compo-
nent atop of the Poisson variance with the same mean number of
photons:

Var½N� ¼Nþδ2sci � N
2
: ð4Þ

The second case is much more complicated as it concerns the
secondary correlated events (often called cascaded or clustered)
produced by the primary ones. Each primary event i is to produce
a random number of secondary events Ki, and each jth secondary
event has an i.i.d. random displacement time Δtij from the primary
event time ti as shown on Fig. 1d (dashed line). Thus, the total
point process is expressed as a sum of primary and secondary
events:

Xin�nðtÞ ¼ ∑
N

i ¼ 1
∑
Ki

j ¼ 0
Ai;j � δðt�ti�ΔtijÞ: ð5Þ

Using known results of the mean and covariance of Xin-n(t) [21],
assuming that IRF of crosstalk events is just the same h(t) as for
any primary event, and applying a filtering procedure to the
correlated point process (5), the SiPM output response can be
expressed as

E½VoutðtÞ� ¼ Vser � Npe � ð1þKsecÞ � ρtotnh
� �ðtÞ
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