Nuclear Instruments and Methods in Physics Research A 785 (2015) 105-109

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in
Physics Research A

journal homepage: www.elsevier.com/locate/nima

NUCLEAR

Technical Notes

Code optimisation in a nested-sampling algorithm

SJ. Lewis®, D.G. Ireland ®*, W. Vanderbauwhede ?

@ School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK

b SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:

Received 2 February 2015
Accepted 2 March 2015
Available online 10 March 2015

Keywords:

Monte Carlo methods

General-Purpose computation on Graphics
Processing Units (GPGPU)

Data analysis

The speed-up in program running time is investigated for problems of parameter estimation with nested
sampling Monte Carlo methods. The example used in this study is to extract a polarisation observable
from event-by-event data from meson photoproduction reactions. Various implementations of the basic
algorithm were compared, consisting of combinations of single threaded versus multi-threaded, and CPU
versus GPU versions. These were implemented in OpenMP and OpenCL. For the application under study,
and with the number of events as used in our work, we find that straightforward multi-threaded CPU
OpenMP coding gives the best performance; for larger numbers of events, OpenCL on the CPU performs
better. The study also shows that there is a “break-even” point of the number of events where the use of
GPUs helps performance. GPUs are not found to be generally helpful for this problem, due to the data

transfer times, which more than offset the improvement in computation time.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Many data analysis tasks in nuclear and particle physics are
parameter estimation problems. Values of parameters are found by
comparison of a data model function with distributions of mea-
sured data. A common, and frequently satisfactory, approach is to
maximise a likelihood function, and summarise the information
about the parameters by taking the point of maximum likelihood
and examining the behaviour in the vicinity of the maximum to
estimate the uncertainty in the extracted value of the parameter.
This is implemented in gradient-based searches that are the
default in packages such as MINUIT [1], and is simply referred to
as “fitting”.

In some cases, however, such an approach is not adequate to
extract all available information from experimental measure-
ments, and a full evaluation of a likelihood function is required.
This is particularly true in cases where the measured data are
sparse, or where the data model has correlations among para-
meters that are of higher order than simply linear. By evaluating
the full likelihood function, one captures all the available informa-
tion, but the disadvantage can be that the calculation of likelihood
may be extremely demanding.

Modern techniques of Markov Chain Monte Carlo (MCMC)
calculations are designed to sample complicated, multidimen-
sional probability density distribution functions efficiently, but

* Corresponding author.
E-mail address: David.Ireland@glasgow.ac.uk (D.G. Ireland).

http://dx.doi.org/10.1016/j.nima.2015.03.006

whereas a gradient-based optimisation may typically require of
order 100 likelihood function evaluations, a typical MCMC calcula-
tion needs perhaps of order 10* evaluations. Depending on the
complexity of the likelihood function this could result in signifi-
cant computation time.

If measurements produce event-by-event data, a likelihood of
each datum can be calculated and combined to give a total
likelihood. Since the same calculations need to be performed for
each event, this points to the use of parallelisation to help program
speed-up. The advent of general purpose graphical processor unit
(GPGPU) programming suggests that an implementation of an
event-by-event likelihood calculation on a GPU might be the best
way forward. Indeed, it has been shown [2] that for event-by-
event maximum likelihood calculations in partial wave analysis,
speed-ups of two or three orders of magnitude are possible over
conventional CPU running.

In this paper we examine the consequences of evaluating a
likelihood function of modest complexity, where the measure-
ments consist of event-by-event data of modest numbers. Section
2 introduces the example problem, Section 3 describes the nested
sampling algorithm and outlines the various implementations in
software and hardware, and Section 4 presents the results.

2. Statement of problem
The example used in this paper is based on a two-body reaction

in which a linearly polarised photon interacts with a proton target,
producing a pseudoscalar (J* = 0~) meson and a baryon. We wish

0168-9002/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.sciencedirect.com/science/journal/01689002
www.elsevier.com/locate/nima
http://dx.doi.org/10.1016/j.nima.2015.03.006
http://dx.doi.org/10.1016/j.nima.2015.03.006
http://dx.doi.org/10.1016/j.nima.2015.03.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2015.03.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2015.03.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2015.03.006&domain=pdf
mailto:David.Ireland@glasgow.ac.uk
http://dx.doi.org/10.1016/j.nima.2015.03.006

106 S.J. Lewis et al. / Nuclear Instruments and Methods in Physics Research A 785 (2015) 105-109

to determine the photon beam asymmetry, X, which is the
difference divided by the sum of cross-sections for the two states
of photon linear polarisation. This is achieved by measuring the
distribution of mesons as a function of azimuthal angle ¢, which is
the angle between the reaction plane and the direction of the
photon's linear polarisation (E-vector). We assume, for simplicity,
that there is a fixed photon energy E, and centre-of-mass scatter-
ing angle 07 In a real experiment, data would be sorted into bins
with a range of E, and 6¢,,, but the ranges would be minimised to
extract the maximum physics information from the variation of
observables as functions of E, and 6g,. This example could be
applied to any reaction in which the photon beam asymmetry is to
be determined.
The cross-section as a function of the angle ¢ is given by

0 =0o(1—P,Z cos (2¢)) (1)

where o is the unpolarised cross-section, P, is the degree of
photon polarisation and X is the beam asymmetry we desire to
extract.

We assume that it is possible to polarise the photon beam in
such a way that the electric vector can be oriented either parallel
(II') or perpendicular (L) to a reference plane in the lab frame. An
asymmetry between these two settings is then

_oi(P)—o(@P)
A= o,

By measuring the number of mesons as a function of ¢) in both
these states, we obtain an estimator of the asymmetry:

Ni()—N L (p)
Ni()+N (@)

A complicating factor of potentially different numbers of
incident photons in each of the two states is omitted in this
example to aid clarity. The two luminosities are taken to be equal.
We also assume that the degree of photon polarisation P, is the
same for both settings, and is known accurately, so that we do not
need to regard it as a nuisance parameter.

With this in mind, we see that the problem is simply a one-
parameter problem, where it is knowledge of X that we desire to
infer from the measured data. The likelihood (probability) of
measuring N, and N, events given a definite asymmetry value
ais

=P, X cos (2¢).)

A= (©)

PINN @) = 510 (1 +a)- @

where Z is a normalising constant.

For each event, we need the meson azimuthal angle ¢ and the
setting (Il or L). For a given value of X, an asymmetry is calculated
from Eq. (2). Eq. (4) then reduces to

PNy =1,N. =0la)=1(1-0a) (5)
or
PNy =0,N, =1la)=3(1+0q) (6)

depending on the setting. For M events, the total likelihood is then
the product of the likelihoods of each event:

M
L= T[P: (7)
i=1

In realistic examples we expect something between 10° and
10* events, so if code can be parallelised to perform likelihood
calculations on several events at once, a speed-up should be
possible.

In this study to determine the best code implementation
strategy for applications of this type, we have simulated the
reaction with known values of X to generate events that we know
to be free of detector peculiarities. We use a two-body phase-space

generator where the azimuthal distributions of the mesons are
modulated according to Eq. (1).

3. Implementation
3.1. Nested sampling

Nested sampling [3] is a form of MCMC, a Bayesian approach to
inference problems. Whilst nested sampling has been applied to a
specific hadron physics problem in this paper, it is a general
algorithm that is applied to a wide range of problems.

The primary objective of nested sampling is to provide a
sampling of a posterior probability density function, and calculate
a value referred to in the literature as the evidence. The evidence is
a quantity with which different data models can be compared, but
in this application we are only interested in parameter estimation,
so it is a by-product of the calculation. A prior probability density
in parameter space is used in conjunction with the event-by-event
likelihood function (Eq. (7)) to generate the posterior.

As with other MCMC applications, nested sampling works with
a population of points in parameter space. The prior probability
density is sampled to give an initial population, and for each point
in this sampled prior, a likelihood value is calculated. In nested
sampling, the point with the lowest likelihood is recorded and
overwritten with a copy of a surviving point. This new point is
then altered in an exploration step within parameter space, and its
likelihood is calculated. If the resulting likelihood is lower than
that of the overwritten point, the new point is moved again in a
further exploration step. This process continues until the like-
lihood of the new point is found to be greater than that of the
overwritten point. The algorithm then finds the next point with
the lowest likelihood and the process is repeated until a given
termination condition is met [4]. The general idea is that the
current population will migrate to the regions of greatest prob-
ability. For consistency, the termination condition used in this
work was a set number of iterations.

3.2. Data parallelisation

Since the clock speed of CPUs has stagnated, parallel program-
ming has become the focus of computing performance develop-
ment. The use of multicore processors and General-Purpose
Graphics Processing Units (GPGPUs) has become mainstream in
everything from scientific computing and state-of-the-art gaming
technology to standard desktop computers and laptops. There is
now a sustainable path to improving computing technologies for
the foreseeable future. Although the spotlight is currently on
GPGPU computing, it must be remembered that all programs
and algorithms will include some amount of sequential code, even
if it exists solely to execute kernel functions or perform or some
standard initialisations. In most cases, these serial sections of a
program create bottlenecks that no amount of parallelisation can
avoid. For this reason, heterogeneous platforms - i.e. the combina-
tion of highly optimised CPU cores with the massively paralleli-
sable GPU cores - have become increasingly popular. These two
components must complement each other - if the CPU is outdated
and obsolete, any speed-up obtained from a high-end GPU will be
hidden by the slow processing at one of these bottlenecks. In order
to make the most of the available hardware, both components
must be taken into consideration.

Not all algorithms can be parallelised; recursive and sequential
programs, or even serial sections of code, can form bottlenecks
that impede the run-time of a program. There are some cases
where parallelising data over multiple threads or cores can result
in a slower run-time as no speed-up is gained and time is lost

Download English Version:

https://daneshyari.com/en/article/8173527

Download Persian Version:

https://daneshyari.com/article/8173527

Daneshyari.com

https://daneshyari.com/en/article/8173527
https://daneshyari.com/article/8173527
https://daneshyari.com

