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a b s t r a c t

This paper is to develop a simple micromechanics-based model taking account of progressive damaging
for carbon black (CB) filled rubbers. The present model constitutes of the instantaneous Young's modulus
and Poisson's ratio characterizing rubber-like material, a double-inclusion (DI) configuration considering
the absorption of rubber chains onto CB particles, and the incremental Mori-Tanaka formula to compute
the effective stressestrain relations. The progressive damage in filled rubbers is described by the DI
cracking, which is represented by the remaining loadecarrying capacity. The present predictions are
capable of embodying the well-known S-shaped response of filled rubbers, and also verified by the
comparison with the experimental and analytical results. Moreover, strain localization effect is clearly
demonstrated by finite element method (FEM) simulations, and reaches a decisive interpretation to the
complicated synergic micro-mechanisms between hard fillers and soft phase in such flexible composites.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Filled rubbers have been widely applied in various industrial
fields due to their outstanding large-deformability. Costa et al. [1]
studied the multi-walled carbon nanotubes (MWNT) filled copol-
ymer, and found that the composites possess the electro-
mechanical properties with high sensibility at larger strain, and
could be used for the electromechanical sensors for large strains
applications. Anuar and Zuraida synthesized the thermoplastic
elastomer composite reinforced with kenaf fiber [2]. Jovanovic in-
vestigates the effect of carbon black (CB) filler on the cure kinetics,
mechanical properties, morphology and thermal stability of rubber
blends [3]. The resulting macroscopic properties of filled rubbers
mainly rely on the inherent microstructure characteristics, and the
interrelationship should be established.

Many analytical works have been conducted in explaining such
highly nonlinear mechanical behaviors including the damage effect.
Firstly, micromechanics approaches are briefly reviewed.Mullins [4],
Qi et al. [5] systematically measured the stressestrain relations of
vulcanized rubbers containing CB powders, and introduced a strain
amplification factor c ¼ E/EM ¼ 1 þ 2.5fP þ 14.1fP2 (EMematrix
modulus, fPeparticle volume fraction) to describe the enhanced
elastic property. Although a good agreement was achieved between

thepredictions and experiments, the third coefficient dependson the
author's appetite and could not be rigorously deduced. Bergstrom
et al. [6] investigated the influence of hard particles on the me-
chanical response of filled rubbers by experiment and FEM. A new
concept was proposed based on the first strain invariant instead of
strain amplification, and could predict the experiments very well. To
the best of authors' knowledge, the finite deformation of composites
was not really solveduntil Ponte Castaneda [7,8] developed a second-
order homogenization method, and adopted the optimization
computation to solve the energyminimumproblem todetermine the
appropriate deformation compatible conditions between two pha-
ses. Unfortunately, solving so many partial differential equations in
their model is a challenging work, and only confined to the plane
strain case up to now. Recently, the predictions based on the second
order theory still could not successfully reproduce FEM simulations
[9]; Jiang et al. have systematically studied filled rubbers by molec-
ular chain networkmodel and Eshelby's equivalent inclusion theory,
respectively [10e12]. Bouchart et al. [13,14] proposed another alter-
native formula to study compressible hyper-elastic composites.
Omn�es et al. [15] developed a generalized self-consistent scheme,
containing the occluded rubber, the bound rubber and a percolating
network, to predict the elasticity offilled rubber. Yin [16] developed a
constitutive model for particle reinforced elastomers based on
Eshelby's tensor [17]. Although the interaction betweenparticles and
matrix is fully considered, some deductions are arguable. Nemat-
Nasser [18,19] innovatively extended the Eshelby's tensor and ob-
tained the corresponding formula for large deformation. Huang et al.
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[20] presented a micromechanical analysis for predicting the stress/
strain behavior of the composite made of weft-knit polyester fiber
interlock fabric and a polyurethane elastomer matrix. Li et al. [21]
studied CB filled rubber experimentally and numerically analyzed
the local strain filed, concluded that the local strain distribution in a
rubber matrix approximately obeys the statistical Gaussian distri-
bution. Molecular chain network models are commonly adopted for
filled rubbers. Based on the additive network configurations,
Govindjee [23] developed amicromechanicsmodel and analyzed the
Mullins' effect and debonding damage in CB filled rubbers. Further-
more, Dargazany [24] proposed a network evolution model to study
the deformation-induced anisotropy and damage. The network
models based on the statistics thermodynamics could not stand for
the real microstructures, and therefore could not to fatherly consider
the damage evolution. Quantifying the effective properties is
conventionally done by FEM-based numerical simulation. Unfortu-
nately, only two-dimensional (2D) multi-inclusion composite model
could be Drozdov [22] emphasized themechanical energy instead of
entropy theory of polymer chains at finite strain deformation, and
developed a micromechanics model for polymer and filled polymer
as well. simulated by FEM due to the weak convergence in the finite
strain mechanism [9,25]. Moore et al. proposed an efficient frame-
work for predicting filled elastomer damping properties based on
imaged microstructures [26]. Their proposed multiscale framework
shows a significant improvement in computational speed over direct
numerical simulations using the FEM. Morozov et al. developed a
realistic model of spatial arrangement of fillers in the rubber matrix
[27], and fully considered the following structural parameters, such
as the distribution of filler sizes, the fractal characteristics of clusters
and the presence of large dense particles. Cantournet et al. investi-
gated the effects of carbon nanotubes on the mechanical behavior of
elastomeric materials [28], and presented a systematic approach for
reducing the experimental data to isolate the MWNTcontribution to
the strain energy of the composite. A constitutivemodel for the large
strain deformation behavior of MWNT elastomer composites is then
developed. In summary, strain localization effect, especially strain
locking-up, play a crucial role during the overall deformation of filled
rubbers [29]. However, many existing researches often neglect this
deformation stage in order to avoid the resulting difficult induced by
locking-up deformation [30].

In this paper, a physics-based constitutive model with consid-
ering the damage effect will be developed for filled rubbers. For
sake of the convenience to practical application, the model is
comparatively simple to be readily implemented in a general pur-
pose FEM code for analyzing themacroscopic composite structures.
Additionally, the progressive damage effect is involved by adopting
DI configuration to represent the microstructure evolution, and
FEM simulation is also conducted to analyze the inherent micro-
deformation mechanisms.

2. Micromechanics-based damage model

2.1. The tangent stiffness of rubber matrix

Rubber matrix is supposed to be isotropic, hyper-elastic, nearly
incompressible and described by the following Ogden's strain en-
ergy function [31] due to its high accuracy,
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here, ai and bi are unknown coefficients that are determined by
least squares fitting to the uniaxial stressestrain curves. li are the
material principal stretches which related to the principal strains
via li ¼ 1 þ εii. The equivalent strain is given by
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Due to the incompressibility condition l1l2l3 ¼ 1. The strain
components should satisfy the following relation,

εyy ¼ εzz ¼ ð1þ εxxÞ�1=2 � 1 (3)

In order to linearly handle the nonlinear behavior, the whole
deformation process is firstly divided into n loading step, i.e., the
applied stretch is imposed on the specimen step by step up to the
final deformation. The tangent modulus at each step is different,
and the instantaneous modulus and Poisson's ratio at the n-th step
are then defined by,
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where sxx and εxx denotes the nominal stress and strain in the
loading direction, respectively. In this paper, all the terms for the
reinforcement and matrix are represented by symbols with sub-
scripts ‘P’ and ‘M’, respectively, and those of the composite are
denoted by symbols without any script. All the tensors and vectors
are written in boldface letters.

2.2. The double-inclusion (DI) model

As for the actual composites, CB nano-powders easily agglom-
erate to form a network structure in the rubber matrix. These
networks surround a part of polymer chains whose deformation is
greatly impeded during the applied stretching. Both experimental
TEM observation [29] and numerical simulations [21] confirmed
that part of rubber matrix among CB powders stretches more
seriously than others, and formed a web-like shaped microstruc-
ture during the applied deformation. Motivated by these observa-
tions, a novel homogenization procedure shown in Fig. 1 is
proposed for studying CB filled rubbers, and the intact and cracked
double inclusions (DI) are diagramed. CB phase deforms linear
elastically due to its high stiffness in relation to the rubber phase.
Therefore, CB particles and the surrounded rubber form a new kind
of inclusions dispersed in the matrix. What follows is the homog-
enization procedure. CB particles are equivalent to a homogeneous
layer, and its volume fraction just equals to the given CB concen-
tration as a knownparameter. The surrounded rubber is assumed to
deform linear elastically, and its material properties are given as the
already known parameters. The volume fraction of DI is defined by

fDI ¼ fP

�
1þ 0:02139DBPabs

1:46

�
(6)

where DBPabs denote DBP (dibuty1 phthalate) absorption and
already measured for different rubbers [32]. A DI configuration is
subsequently constructed as shown in Fig. 1, and its equivalent
stiffness can be computed by our previous research [33]. In order to
realize this purpose, a new configuration including a particle and its
surrounding layer is firstly constructed. During the DI construction,
the boundaries of particle and its surrounding layer are supposed to
be parallel for simplicity.

In the DI model, a centered particle is surrounded by an inho-
mogeneous layer, in turn embedded in an infinite matrix CM, and
the layer and particle constructs a DI. The DI includes a layer of
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