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a b s t r a c t

The paper presents a quantum mechanical treatment for analyzing the Smith–Purcell radiation
generated by charged particles passing over a periodic conducting structure. In our theoretical model,
the electrons interact with a surface harmonic wave excited near the diffraction grating when the
electron velocity is almost equal to the phase velocity of the surface wave. Then, the surface harmonic
wave is electromagnetically coupled to a radiation mode. The dynamics of electrons are analyzed
quantum mechanically where the electron is represented as a traveling electron wave with a finite
spreading length. The conversion of the surface wave into a propagating mode is analyzed using the
classical Maxwell's equations. In the small-signal gain regime, closed-form expressions for the
contributions of the stimulated and spontaneous emissions to the evolution of the surface wave are
derived. The inclusion of the spreading length of the electron wave to the emission spectral line is
investigated. Finally, we compare our results based on the quantum mechanical description of electron
and those based on the classical approach where a good agreement is confirmed.

& 2015 Published by Elsevier B.V.

1. Introduction

In 1953, S.J. Smith and E.M. Purcell firstly demonstrated that an
optical light is emittedQ4 when an electron beam moves parallel and
close over a metallic diffraction grating in vacuum [1]. The process was
understood in terms of a simple model based on oscillations of the
image charges induced on the metallic surface by electrons. The
Smith–Purcell (SP) effect is widely considered as a possiblemechanism
for free-electron laser (FEL) operating over a wavelength range
extending from the millimeter [2,3] to the optical region [4,5]. In
recent experiments [6–8], it has been shown that the SP radiation
provide a promising candidate to realize compact and tunable radia-
tion source in the THz region. FELs based on the SP effect are operated
in the amplifier and oscillator configurations where the optical feed-
back is required in the latter case [9–14]. Such FELs could be made
with much more compact device structure compared to other FELs
(e.g., undulator FELs), and therefore may be interesting for application.

Many theoretical analyses have been developed to analyze the
dynamic of the Smith–Purcell radiation [15–22]. In most of these
analyses, the metallic waveguide with periodic corrugation behaves
as a slow wave structure through which a slow space harmonic of a
transverse magnetic (TM) Floquet mode is propagated. The TMmode
has a longitudinal electric field component and interacts most

strongly with the traveling electrons. The working principle involves
the synchronism between the velocity of the electron beam and the
phase velocity of the TM surface modes of the periodic structure. The
SP radiation contains a broad continuous frequency band and the
radiation wavelength is determined by the observed angle, period of
grating, and electron beam energy. Since the minimum corrugation
period can be obtained currently is ⪅0:1 μm, the generation of SP
radiation operating up to the ultraviolet is commonly accomplished
by using nonrelativistic electron beams. In these cases, the radiation
wavelength is a fraction of the corrugation period.

In all forgoing analyses, the interacting electron is consider as a
point particle where its spreading size is assumed to be much shorter
than the period of grating as well as the wavelength of emitted
radiation. M. Yamada in [23] developed a quantum mechanical treat-
ment for calculating the amplification gain of an optical amplifier in
which an electron beam passes above a dielectric planer waveguide.
This amplifier is basically one type of the Cherenkov FELs. The
theoretical analysis was performed based on the density matrix
formalism which is a quantum statistical treatment [24–26]. In the
theoretical model of [23,27,28], the electron is represented by an
electron wave with a finite spreading length. In [27,28], the validity of
the theoretical model is examined by comparing the experimentally
measured data of intensities and spectrum profiles of optical radiation
with those predicted theoretically. It is confirmed that the spectral
profile of emission is characterized by the spreading length of the
electron wave.
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In this paper, we present a new theoretical analysis for the SP
radiation in the small-signal low gain regime. In our analysis,
the dynamic of the EM wave is described using the Maxwell's
wave equations. On the other hand, the dynamic of electrons are
quantum mechanically analyzed using the density matrix formal-
ism. We derive a generalized expression for the dispersion func-
tion that determines the spectral profile of emitted radiation. In
this expression, the inclusion of the finite spreading length of the
electron wave is studied. Our analysis is devoted for the non-
relativistic electron energies (r100 keV). Also, since low-density
beams are utilized in the SP experiments constructed to date, the
space charge effects are neglected.

In Section 2, the analytical representations of the EM waves are
shown. The EM wave is assumed to compose of surface modes that
propagate along the corrugated surface and radiation modes that
are emitted from the corrugated surface. Formulations of the
radiation power and the stored energy are presented. In Section 3,
the electron dynamics are described on the basis of the density
matrix method. In Section 4, the gain coefficient of amplification by
the stimulated emission and the radiation rate by the spontaneous
emission are derived. In Section 5, the resonance condition for
beam-radiation interaction is introduced, and that the spectrum
characteristics of SP radiation are discussed in details. In Section 6,
we present a comparison between our results and those obtained in
a well-known classical analysis where a satisfactory agreement is
reached. Finally, conclusions are given.

2. Analytical model and formulation of optical wave

2.1. Representation of optical wave

An illustration of the SP effect is shown in Fig. 1 where an
electron beam moves at a distance h above a metallic corrugated
surface with spatial periodicity Λ in the z direction. The depth
direction of the corrugation is y and the width direction is x. The
corrugation is uniform and oriented in the x direction. We also
assume that that cross-sectional area of the electron beam is w�
w in the x�y plane.

Variations of the electric field Eðx; y; z; tÞ and the magnetic field
Hðx; y; z; tÞ of the EM wave are given by Maxwell's wave equations as

∇2E�μ0σ x; y; zð Þ∂E
∂t

�μ0ε x; y; zð Þ∂
2E
∂t2

¼ μ0
∂J
∂t

ð1Þ

∇2H�μ0σ x; y; zð Þ∂H
∂t

�μ0ε x; y; zð Þ∂
2H
∂t2

¼ �∇� J ð2Þ

where σðx; y; zÞ and εðx; y; zÞ are the electrical conductivity and
dielectric constant, respectively, which have different values in the
metal and vacuum regions. Jðx; y; z; tÞ is the current density of the

electron beamwhere the moving electrons produces an EM wave on
the grating. The interaction between the EM field localized close to
the grating surface and the electron beam to obtain radiation power
is counted through this current density J. The evaluation of J is
performed with the help of quantum mechanical treatment assum-
ing the electron wave representation as will be given in following
sections. In our model, it is assumed that a sufficiently intense
magnetostatic field in the direction of the beam flow is applied. Then,
the electron beam is considered to be thin where the transverse
velocities of electrons in the direction normal to the electrons
propagation can be neglected. In the limit of a thin electron beam,
we can neglect the effects of the self-magnetic fields in the
transverse directions on the longitudinal modulations of electrons.
Therefore, the EM wave is restricted to be a TM mode having Hx, Ey
and Ez components where the z-component of the electric field Ez
interacts most strongly with the electrons.

We define the spatial wavenumber of the corrugation corre-
sponding to the grating period Λ as

G¼ 2π
Λ

ð3Þ

Here, we assume the position of the metal surface in the
vertical direction y is varied as

y0 ¼
X
mZ0

dm cos ðmGzÞ ¼
X
mZ0

dm
2

ejmGzþe� jmGz
� �

: ð4Þ

In Eq. (4), m is an integer and the Fourier coefficients dm
determine the peak-to-peak depth of the grating whereas d0 refers
to the average depth of the periodic structure. As shown in Fig. 1,
we set y¼ 0 at the top boundary of the corrugation, the interaction
length is Lz , and the distribution width of the EM wave is Lx. A part
of the energy associated with the surface waves is transformed as
radiation waves. The wavenumbers of both types of waves along z
direction are modified by the corrugation, and then the fields'
distribution is critically modified by the corrugation.

The magnetic field component Hx can be written as

Hx x; y; z; tð Þ ¼Hr x; y; z; tð ÞþHs x; y; z; tð Þ: ð5Þ

In Eq. (5), Hr is a radiation wave component and is given by

Hr ¼ ~E tð Þ
ffiffiffiffiffi
ε0
μ0

r
R þð Þe� jγy� jβzþR �ð Þe� jγyþ jβz
n o

ejωtþc:c: ð6Þ

and Hs is a surface field expressed as a superposition of plane
waves of different frequencies as

Hs ¼ ~E tð Þ
ffiffiffiffiffi
ε0
μ0

r
Uxðx; y; zÞejωtþc:c: ð7Þ

where

Uxðx; y; zÞ ¼
Xm ¼ 1

m ¼ �1
Aðþ Þ
m ðy; zÞe� jðmGþβÞzþAð� Þ

m ðy; zÞe� jðmG�βÞz
n o

: ð8Þ

where, ω is the angular frequency, ~E tð Þ is the temporal field
amplitude and c:c: indicates the complex conjugate of the preceding
terms. β and γ are the wavenumbers (i.e., propagation constants) in
the z and y directions of the radiation wave, respectively. Super-
scripts þð Þ and �ð Þ indicate the forward and backward propagating
components along z direction, respectively. R 7ð Þ and Að7 Þ

m are
amplitude coefficients and amplitude functions, respectively.

The radiation field Hr exists only in the vacuum region where
yZ0. By putting ε¼ ε0, σ ¼ 0, and J ¼ 0 in Eq. (2), the relation
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Fig. 1. The configuration of the Smith–Purcell FEL. The electron beam moves above
the grating surface in the z direction. The grooves repeat periodically with the
grating period Λ, the grating surface at y¼ 0, and the system is invariant in the
x direction.
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