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a b s t r a c t

We present a method for the recovery of the transverse tune spread directly from the beam transfer
function (BTF). The model is applicable for coasting beams and bunched beams at high energy with a
tune spread from transverse nonlinearities induced by the beam–beam effect or by an electron lens.
Other sources of tune spread can be added. A method for the recovery of the incoherent tune spread
without prior knowledge of the nonlinearity is presented. The approach is based on the analytic model
for BTFs of coasting beams, which agrees very well with simulations results for bunched beams at
relativistic energies with typically low synchrotron tune. A priori the presented tune spread recovery
method is usable only in the absence of coherent modes, but additional simulation data shows its
applicability even in the presence of coherent beam–beam modes. Finally agreement of both the analytic
and simulation models with measurement data obtained at RHIC is presented. The proposed method
successfully recovers the tune spread from analytic, simulated and measured BTF.

& 2014 Elsevier B.V. All rights reserved.

Transverse beam transfer functions (BTFs) are a powerful
diagnostic tool. They are used for a wide range of applications,
the most prominent of which is the detection of the machine tune
and the measurement of the stability diagram [1]. Transverse BTFs
are measured routinely using baseband Tune (BBQ) systems emp-
loying CERNs direct diode detection for increased signal to noise
ratio [2]. In coasting beams the BTF can also be used to detect the
transverse tune spread from space charge [3] and thereby directly
measure the magnitude of the transverse space charge. For bun-
ched beams with high synchrotron frequency, head–tail modes
have been observed in BTFs [4].

This paper focuses on the BTF of bunched beams with synchro-
tron periods of the same order of magnitude as the data acquisition
time per BTF sample. We assume that the synchrotron frequency is
orders of magnitude below the betatron frequency, conditions
commonly found in high energy machines. So far the usual practice
is to look at the width of the signal amplitude in either Schottky
spectra or BTFs and use it as an estimate for the tune spread. Where
the BTF is measured, one also uses the imaginary part of the BTF as
an estimate for tune distribution. We present this method and show
that it cannot in general be applied to beams with a transverse
nonlinearity as a source of the tune spread.

One source of tune spread and the motivation for our study is
the electron lens recently installed at the Relativistic Heavy Ion

Collider (RHIC) [5]. We want to be able to measure the tune spread
it introduces. Other, more widespread sources of tune spread
that one might want to quantify using BTFs are space charge or
higher order multipoles. An electron lens is a device in which a
magnetically confined electron beam of defined shape is guided in
parallel to the ion beam in a synchrotron in order to introduce
amplitude dependent focusing [6]. Comparable compensation
schemes are studied for compensation of space charge [7] at RHIC
and another electron lens is discussed for head-on and long-range
beam–beam compensation in LHC [8]. At RHIC the electron lens
will be used to partly compensate the incoherent tune spread from
the beam–beam interaction in proton operation [5]. We want to
diagnose its effect on the tune spread using the BTF. To achieve
this goal, this paper makes use of an analytic model for the BTF of a
local nonlinear lens building on the existing theory for coasting
beams by Berg and Ruggiero [9] based on earlier work by Here-
ward [10]. For the simulation model with Gaussian beams the tune
spread and shape can be recovered by means of fitting the BTF
against the presented analytic model if the shape of the non-
linearity is known. In order to treat the more general case in which
the shape of the nonlinearity is not known, a method to measure
the tune spread directly from the BTF is introduced. We refer to it
as threshold method. The two methods are applied to analytic and
simulated BTFs. We proceed to discuss the beam–beam effect as a
localized nonlinear lens and compare analytic results and simula-
tions to measurements.

In the first section we discuss the analytic equation for the BTF
of coasting beams undergoing an electron–lens or beam–beam
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interaction. These equations are valid in the limit of absence of
coherent modes. We present a robust method to determine tune
spread for arbitrary beam shapes and nonlinearities via detection
of Landau damping.

In the second section we introduce our simulation model for
BTFs with the beam–beam effect and electron lenses. We compare
its results to the analytic expectations and obtain agreement with
the analytic expectation. We show that the tune spread determina-
tion method introduced in the analytic section applies also in the
presence of coherent beam–beam modes in favorable conditions.
We argue that the coasting beam equations stay valid when the
synchrotron frequency is much lower than the betatron frequency.

In the last section we compare simulation and analytic results to
measurements from a dedicated machine experiment. We find BTFs
in agreement with our analytic expectations, for both the full BTF
shape and the threshold method introduced in the first section.

1. Analytic model

In this section we introduce an analytic model based on the
theory for coasting beams, which is extended to bunched beams in
the following sections. We investigate methods to reconstruct the
transverse tune distribution of the beam caused by a local non-
linearity in the horizontal and the vertical plane. We motivate our
approach by revisiting well-known analytic results for incoherent
transverse BTFs of coasting beams with tune spread from chroma-
ticity. We show that in this case the tune distribution can be easily
recovered. With this in mind we present a model for the BTF due to
a transverse nonlinearity. We show that even for a flat beam, the
recovery of the tune distribution is not possible without prior
knowledge of the exact shape of the nonlinearity that gives rise
to the tune spread. For this reason, we then present a method for
recovery of only the total tune spread, not the shape, from the BTF
via detection of Landau damping. Because it detects Landau damp-
ing, the method works without prior knowledge of the source of the
tune spread. Tune spread from chromaticity, octupoles, an electron
lens, incoherent space charge or any other source will be detected
in the absence of coherent modes and external damping.

1.1. Tune spread from chromaticity

The transverse beam transfer function RðΩÞ is defined as the
fraction of the complex response amplitude AðΩÞ of the beam per
driving amplitude DðΩÞ of a beam excited at the frequency Ω. In
the following we will often write BTF for brevity when we in fact
refer to the transverse BTF:

RðΩÞ ¼ AðΩÞ
DðΩÞ ð1Þ

It is understood that the BTF is meaningful when taken at small
amplitudes where D scales linearly with A. Note that for our con-
siderations we need the complex value of the BTF.

There is a good amount of research on BTF of coasting beams.
One well-known example that can be found in textbooks such as
[11] is the case of beams with a tune spread originating from
momentum spread and chromaticity. Assuming that the density of
particles in the beam ψ is known as a function of the betatron
frequency ω, the BTF R at frequency Ω can be calculated as

RðΩÞp
Z 1

�1

1
ω�Ω

ψ ðωÞ dω ð2Þ

The pole at Ω¼ω can be accounted for by adding a small
imaginary term to the denominator or by means of the residue

theorem. Finally one arrives at

RðΩÞp� iπψ ðΩÞþP:V:
Z 1

�1

1
ω�Ω

ψ ðωÞ dω ð3Þ

wherein P.V. denotes Cauchys principal value integral. In the case
of chromaticity the BTF is described by Eq. (3) and therefore the
betatron frequency distribution is proportional to the imaginary
part of the BTF. Measuring the imaginary part of the BTF directly
gives the betatron frequency distribution in the plane of the BTF.

1.2. Beam transfer functions due to localized transverse forces

When the tune depends on the amplitude of the particle in the
plane of the BTF excitation, the situation becomes more compli-
cated. This is the case for nonlinear elements like octupoles or an
electron lens. Here the particles’ change in amplitude due to exc-
itation leads to a consequent change in its betatron frequency
which makes the treatment of the BTF less trivial. We build onwork
by Berg and Ruggiero for coasting beams. They derived the BTF of a
beam with tune spread due to a localized octupole [9]. Their form
for the BTF in the i direction Ri (with i either x or y) reads

RiðΩÞ ¼ c �
Z 1

0

Z 1

0

1

Ω�ωi Jx; Jy
� � Jidψ

dJi
dJx dJy ð4Þ

wherein c is a constant, Jx; Jy the transverse action angle variables, ψ
the distribution function in action angle variables and ωiðJx; JyÞ the
betatron frequency as a function of these variables. Ω is the freq-
uency at which the BTF is calculated. Note that this equation is still
general and becomes octupole specific later in [9] by the introduc-
tion of the ωiðJx; JyÞ for an octupole. An equation for tune shift cau-
sed by a circular Gaussian charge distribution for space charge in
these coordinates was given by Burov and Lebedev [12]. We use it
as follows:

ωxðJx; JyÞ ¼ω0;xþξbb

Z 1

0

I0
Jxz
2

� �
� I1

Jxz
2

� �� �
I0

Jyz
2

� �

exp zðJxþ JyÞ=2
� � dz ð5Þ

with ξbb being the maximum tune shift (for particles in the center
of the beam), I0 and I1 the modified Bessel functions and ω0;x the
lattice tune in the x direction. ωy can be found by exchanging x and
y in the righthand side of Eq. (5). The equation is equivalent to the
one given in [13] for beam–beam evaluated for round beams. We
use it as a model for a stationary electron lens which, in RHIC, is also
a Gaussian charge distribution. For ψ we use a Gaussian beam [9]:
ψ ðJx; JyÞ ¼ σ�4expðσ�2Þexpð� Jx� JyÞ unless noted otherwise.

If needed, chromaticity and other sources of tune spread can be
added to Eq. (4) by inserting its contribution to ωi and ψ and add-
ing an integration over momentum if necessary.

1.3. Flat beam case

Compared to the case of tune spread due to chromaticity, the
recovery of the tune spread from transverse sources is much har-
der, mostly due to the two-dimensional nature of the problem: the
particle tune is a function of both Jx and Jy and there is no way for
the BTF to directly determine Jx. Generally the equitune lines will
not be parallel to the coordinate axes in Jx; Jy, making it impossible
to associate one Jx to one tune shift in the full 2D case. To make the
problem more tractable one may first assume a very flat distribu-
tion. This would for example be the case for a beam of very low
vertical emittance. Say

ψ ðJx; JyÞ ¼
ε�1ψ xðJxÞ; Jyoε
0; JyZε

(
ð6Þ
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