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a b s t r a c t

A procedure based on a Mixture Density Model for correcting experimental data for distortions due to
finite resolution and limited detector acceptance is presented. Addressing the case that the solution is
known to be non-negative, in the approach presented here, the true distribution is estimated by a
weighted sum of probability density functions with positive weights and with the width of the densities
acting as a regularization parameter responsible for the smoothness of the result. To obtain better
smoothing in less populated regions, the width parameter is chosen inversely proportional to the square
root of the estimated density. Furthermore, the non-negative garrote method is used to find the most
economic representation of the solution. Cross-validation is employed to determine the optimal values
of the resolution and garrote parameters. The proposed approach is directly applicable to multi-
dimensional problems. Numerical examples in one and two dimensions are presented to illustrate the
procedure.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The probability density function (PDF) Pðx0Þ of an experimen-
tally measured characteristic x0, in general, differs from the true
physical PDF p(x) because of the limited acceptance (probability) A
(x) to register an event with true characteristic x, finite resolution
and bias in the response function Rðx0 jxÞ, which describes the
probability to observe x0 for a given true value x. Formally the
relation between Pðx0Þ and p(x) is given by

Pðx0Þp
Z
Ω
pðxÞAðxÞRðx0 jxÞ dx: ð1Þ

The integration in (1) is carried out over the domain Ω of the
variable x. In practical applications the experimental distribution is
usually discretised by using a histogram representation, obtained
by integrating Pðx0Þ over n finite sized bins

Pj ¼
Z cj

cj� 1

Pðx0Þ dx0 j¼ 1;…;n ð2Þ

with cj�1; cj the limits of bin j.
If a parametric (theoretical) model pðx; a1; a2;…; alÞ for the true

PDF is known, then the unfolding can be done by determining the

parameters. For example, by a least squares fit to the binned data
[1–3]. Here the model, which allows to describe the true distribu-
tion by a finite number of parameter values, constitutes a priori
information which is needed to correct for the distortions by the
experimental setup,

In contrast, model independent unfolding, as considered, e.g. in
[4–14], is an ill-posed problem, and every approach to solve it
requires a priori information about the solution. Methods differ,
directly or indirectly, in the way a priori information is incorpo-
rated in the result.

2. Description of the unfolding method

To solve the unfolding problem (1), a representation of the true
distribution has to be chosen. This representation should be as
flexible as possible and allow introducing a priori information.
Classical kernel statistics is an example that approximates the true
distribution by putting a 1/N-weighed copy of a kernel PDF at the
location of each of N observed data points and adding them up
(see e.g. [15]). With enough data, this comes arbitrarily close to
any PDF. There exist methods that use a kernel representation of
the true distribution to solve also the inverse problem [16]. One
drawback of this approach is that one has to store all the data
points, another is that the known kernel based algorithms expect
the response function of a set-up in analytical form, i.e. computer
modeling cannot be used.
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In this paper the use of a Mixture Density Model (MDM) [17,19]
to describe the true distribution p(x) is proposed,

pðxÞ ¼
Xs
i ¼ 1

wiKiðx; a1i;…; aliÞ; ð3Þ

where the Kiðx; a1i;…; aliÞ is the ith Probability Density Function in
Mixture (PDFM) with parameters a1i;…; ali and the weight wi the
fraction of the ith PDFM.

The MDM lies between the cases of the parametric representa-
tion of the true density on one hand, i.e. the case when there is
only one distribution in the sum (3), and the kernel statistics
approach where the number of terms in the sum (3) is equal to the
number of observations N. The MDM has a limited number of
parameters for representing a PDF and computer modeling can be
used to calculate the response of the system. The MDM is also
convenient for taking into account different type of a priori
information, such as knowledge about the type of distributions,
constraints on parameters and smoothness of the distributions.
Ideas and achievements of regression analysis as well as classical
kernel statistics can be used in applications of a MDM for
estimating the densities.

Using Eq. (3) to parameterize the solution p(x) reduces the
unfolding problem from finding a solution in the infinite-
dimensional space of all functions to finding a solution in a finite
dimensional space. This way an approximation of the true density
is performed which, in contrast to e.g. a discretization by a
histogram, has the advantage to introduce negligible quantization
errors for sufficiently smooth distributions.

Without loss of generality two-parametric PDFMs will be used
throughout the paper. The first parameter, xi, defines the mean
value (location) of term i and the second one, λi, represents the
standard deviation. Different smooth PDFMs commonly employed
by kernel statistics, such as biweight, triweight, tricube, cosine,
Cauchy, B-spline and other kernels can be used. Rather popular is
the Gaussian Mixture Model (GMM) [18] with PDFMs

Kiðx; xi; λiÞ ¼
1

λi
ffiffiffiffiffiffi
2π

p exp �ðx�xiÞ2

2λ2i

 !
; ð4Þ

which provides a rather flexible model in the approximation of a
wide class of statistical distributions. The standard deviation λi
acts as a regularization parameter, which allows to adjust the
smoothness of the result. Weights, positions xi and standard
deviations λi are determined by the unfolding procedure
described below.

Substituting p(x) as represented by Eq. (3) into the basic Eq. (1)
yields

Pðx0Þ ¼
Xs
i ¼ 1

wi

Z
Ω
Kiðx; xi; λiÞAðxÞRðx0 jxÞ dx; ð5Þ

and taking statistical fluctuations into account, the relation
between the weights wi and the histogram of the observed
distribution becomes a set of linear equations

P ¼Qwþϵ; ð6Þ
where P is the n-component column vector of the experimentally
measured histogram, w¼ ðw1;w2;…;wsÞt is the s-component
vector of weights and Q is an n� s matrix with elements

Qji ¼
Z cj

cj� 1

Kiðx; xi; λiÞAðxÞRðx0 jxÞ dx j¼ 1;…;n; i¼ 1;…; s: ð7Þ

The vector ϵ is an n-component vector of random deviates with
expectation value E½ϵ� ¼ 0 and covariance matrix C, the diagonal
elements of which being Var½ϵ� ¼ diagðσ2

1;σ
2
2;…;σ2

nÞ, where σj is
the statistical error of the measured distribution for the jth bin.
Each column of the matrix Q is the response of the system to one

of the PDFM in the mixture model for the true distribution.
Numerically the calculation of the column vectors can be done
by weighting events of a Monte Carlo sample such that they follow
the corresponding PDFM, see Ref. [20], and taking the histogram of
the observed distribution obtained with the weighted entries.

By a non-negative least-squares fit, the weight vector w in
Eq. (6) for a given set of PDFMs is determined such that it
minimizes

X2 ¼ ðP�QŵÞtC�1ðP�QŵÞ ð8Þ
under the constraints

wiZ0 i¼ 1;…; s: ð9Þ
Following Ref. [21], if an unconstrained solution satisfies Eq. (9)
then ŵ solves the constrained problem. Otherwise, the solution to
the constrained problem must be a boundary point of 0; þ1½ Þs
and therefore at least one wi¼0. It follows that after performing all
possible regressions with one or more wi in Eq. (9) set to zero, the
non-negative problem is solved by picking the subset of wi

satisfying Eq. (9) such that X2 as defined in Eq. (8) is smallest.
The numerical algorithm and computer program for solving this
minimization problem has been developed in references [21,22].
Here, first the subset of components equal to zero is determined
iteratively, and the vector of the remaining indices ŵ is found by
simple linear regression

ŵ ¼ ðQtC�1QÞ�1ðQtC�1ÞP; ð10Þ
where Q is the submatrix of Q that corresponds to the subset of
indices of positive components of the solution. The result of the fit
is an estimate of the unfolded distribution p̂ðxÞ, defined by a subset
of parameters xi; λi, i¼1,…,k which are summed with positive
weights ŵi; i¼ 1;…; k to yield

p̂ðxÞ ¼
Xk
i ¼ 1

ŵiKiðx; xi; λiÞ: ð11Þ

The choices of the optimal type of PDFMs and the values of
parameters (mean values and the standard deviations for the GMM
model) are driven by the accuracy and the complexity of the model.
The goal is a simple, and at the same time, accurate solution of the
problem. A figure of merit for the accuracy is the Prediction Error
(PE) [23], defined as the expectation value of the average squared
normalized residual when using the predictor Qŵ to describe an
independent experimentally measured histogram Pnew drawn from
the same parent distribution as the original,

PEðQŵÞ ¼ E
1
n
ðPnew�QŵÞtC�1ðPnew�QŵÞ

� �
: ð12Þ

The expectation is taken over Pnew. In the following we will denote
the predictor Qŵ as P̂ and call it the fitting histogram.

Following Ref. [23], V-fold Cross-Validation allows us to esti-
mate PEðQŵÞ. Here the given data set U is split into V subsets
U1;…;UV with equal number of events. The complementary sets
are denoted by U ðvÞ ¼ U�Uv. Applying the minimization procedure
to U ðvÞ and forming the predictors Qŵ ðvÞ, the Cross-Validation
error (CV) is defined by

CV ¼ 1
n

XV
v ¼ 1

ðPv�Qŵ ðvÞÞtC�1ðPv�Qŵ ðvÞÞ; ð13Þ

where Pv is the vector of histogram contents for the subset of the
data Uv. The Cross-Validation error is the estimate of the Predic-
tion Error

CV ¼cPEðQŵÞ: ð14Þ
In order to have sufficient sampling of the configuration space, the
number of folders used in the Cross-Validation procedure should
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