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a b s t r a c t

First, a generalized theoretical approach towards beam coupling impedances and stretched-wire
measurements is introduced. Applied to a circular symmetric setup, this approach allows to compare
beam and wire impedances. The conversion formulas for TEM scattering parameters from measure-
ments to impedances are thoroughly analyzed and compared to the analytical beam impedance solution.
A proof of validity for the distributed impedance formula is given. The interaction of the beam or the
TEM wave with dispersive material such as ferrite is discussed. The dependence of the obtained beam
impedance on the relativistic velocity β is investigated and found as material property dependent.

Second, numerical simulations of wakefields and scattering parameters are compared. The applic-
ability of scattering parameter conversion formulas for finite device length is investigated. Laboratory
measurement results for a circularly symmetric test setup, i.e. a ferrite ring, are shown and compared to
analytic and numeric models. The optimization of the measurement process and error reduction
strategies are discussed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The concept of beam coupling impedance in circular accelerators
was introduced by Vaccaro in 1966 to study coherent instabilities in
the CERN ISR [1]. The determination of the impedance for the
purpose of instability threshold or beam induced heat load estima-
tion is nowadays mostly done by computer simulations. Nonetheless,
for complicated accelerator devices such as kicker magnets, collima-
tors, or diagnostic equipment one also requires laboratory measure-
ment methods, such as the wire method.

The electromagnetic field distribution of a single particle in free
space approaches the one of a lossless coaxial TEM transmission line
in the ultrarelativistic limit [2]. This motivates measuring the long-
itudinal or transverse beam coupling impedance of accelerator
components by replacing the beam with one or two wires, respec-
tively. The transmission line measurement technique has been
introduced by Sands and Rees [3] for the determination of beam
energy loss factors in the Time Domain (TD) by a pulse excitation.
When using modern Vector Network Analyzers (VNA) the beam
coupling impedance can be determined in Frequency Domain (FD) by
sweeping the frequency of a sinusoid, i.e. a narrow-band signal.

Especially when looking at particular sidebands that are susceptible
to beam instabilities rather than at the total energy loss the FD
method is to be preferred.

In both TD and FD one has to make sure not to measure
artifacts of the measurement setup, but rather the device as it is
supposed to be placed in the beam line. The de-embedding
process to measure only the Accelerator Device Under Test (DUT)
was investigated especially for lumped impedances by Hahn and
Pedersen [4]. In order to allow the de-embedding with a reference
(REF) measurement of an empty box or beam pipe, the impedance
mismatch from the cables to the measurement box must not
exceed a certain value. Some techniques to achieve this are
described by Kroyer et al. [5]. At high frequency one can also use
‘Time Domain Gating’ to disregard the mismatch reflections [6],
but this requires a very high bandwidth of the VNA to properly
represent the spectrum of the window-function. Another option is
to damp multiple reflections with RF attenuation foam [7].

Walling et al. [8] first introduced an approximative formula for
measuring distributed impedances. This was later replaced by the
exact formula by Vaccaro [9]. Error considerations were performed by
Hahn [10] and Jensen [11]. Hahn's paper gives explicit error estimates
dependent on the electrical length derived from the integral equation
also used by Gluckstern and Li [12]. Nonetheless, Hahn's expressions
for distributed impedances are obtained by perturbation theory for
small impedance, and they assume a priori a thin wire limit.
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Instead of using Gluckstern's integral equation, this paper
approaches distributed impedances by computing the quasi-
TEM-eigenmode, i.e. a TEM mode that has a small longitu-
dinal field component which contains the losses. This mode's
convergence to the fields for beam impedance calculation is
shown for decreasing wire radius below higher order mode
cutoff. This represents the other succession of the limits: the a
priori assumption is infinite longitudinal electrical length and
then the wire radius limit is investigated.

The paper generally covers analytical and numerical models for
longitudinal and transverse impedance measurement of lossy broad-
band structures. The models will be applied to the test case of a
dispersive ferrite ring which is treated analytically, numerically, and
by measurement. Due to its dispersive character, the ferrite ring
allows to benchmark the measurement interpretation formulas for
different impedance ranges and different electrical lengths. Starting
from a 2D analytical model, i.e. infinite electrical length, its limita-
tions are illustrated by a 3D numerical model for finite length.

The interplay between measurements and simulations can be
outlined as follows: on one hand, measurements serve to obtain
impedances for β¼ 1 which can validate simulations that allow
scaling with β. On the other hand, numerical beam simulations
for β¼ 1 and scattering parameter (S-parameters see e.g. [13])
simulations are important to avoid wrong assumptions in the
measurements.

The analytical model for the dispersive material presented here
motivates also a simplified low frequency (LF) approach (“radial
model” [14,15]) that plays an important role for the interpretation
of LF impedance in general and in particular of coil measurements
[16] for transverse impedance.

The paper is structured as follows: Section 2 starts with the
analytical model for the beam impedance and for the measure-
ment, i.e. a model with excitation and an eigenvalue problem,
respectively. Both are solved for circularly symmetric 2D geometry.
In Section 3 the way to determine the impedance from scattering
parameters is discussed. The eigenmode approach from Section 2
is used to prove this relation for distributed impedances. Section 4
then draws an intermediate conclusion, comparing the 2D analy-
tical beam and eigenvalue results only.

A real ferrite ring, as it has also been measured in practice, was
simulated in 3D with a particle beam (TD) and a wire (TD/FD), as
described in Section 5. An a posteriori justification of the 2D
modeling in Section 2 is given here. Section 6 discusses the
measurement process and its results. Technical details and mate-
rial data error propagations are described in the appendices. The
commonalities and differences for the longitudinal and transverse
measurements are pointed out in Section 7. The paper concludes
in Section 8 with a discussion of the different measurements
methods and their respective simulation support.

2. Analytical model

From Maxwell's equations we find the 2D Helmholtz equation
for the longitudinal electric field

ðΔ? þk2? ÞEz ¼ rhs ð1Þ

and the dispersion relation

k2? þk2z ¼ω2μϵ ð2Þ

where kz and k? are the longitudinal and transverse wave numbers
and μ and ε are the complex permeability and permittivity as

function of position and frequency ω¼ 2πf , respectively. This will
be solved for three different assumptions:

1. Beam model (β and γ are the relativistic velocity and mass
factors)

kz ¼
ω
βc

ð3Þ

rhs¼ � iω

β2γ2
μ0

q
πa2

Hða�rÞ ð4Þ

with beam radius a, total charge q, and H being the Heaviside
step function

2. Radial model obtained from beam model with β-1, i.e.

kz ¼ 0; γ ¼ 0; βγ ¼ i; E
!

? ¼ 0 ð5Þ

3. Coaxial line model (central wire radius a)

EzðrraÞ ¼ 0; quasi�TEM�eigenmode ðrhs¼ 0Þ ð6Þ
where kz is an eigenvalue obtained from the equation

ðΔ? þω2μεÞEz ¼ k2zEz: ð7Þ

The range of validity of the radial model is also discussed in
[14,15].

Before solving Eq. (1) we take a closer look on the dispersion
relation Eq. (2), rewritten for the beam model as

k2? ¼ω2

c2
μ
r
εr�

1

β2

 !
: ð8Þ

The material properties are presented as

μ ¼ μ0 � iμ″ and ε ¼ ε0 � iε″þ κ
iω

ð9Þ

with κ being the conductivity and μ″ and ε″ being magnetization
and polarization losses, respectively. Furthermore we define the
lossless refraction index and the loss tangents as

n¼
ffiffiffiffiffiffiffiffiffi
μ0
rε0r

p
; tanδμ ¼

μr″
μ0
r

and tan δε ¼
εr″þκ=ωε0

ε0r
: ð10Þ

This allows to rewrite Eq. (8) as

k2? ¼ω2

c2
n2ð1� tan δμ tanδεÞ�

1

β2� in2ð tan δμþ tanδεÞ
" #

ð11Þ

which shows that in the lossless case one has transversely
propagating waves exactly when the Cherenkov-condition βn41
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Fig. 1. Complex k2? plane (transverse propagation plot). The vertical axis represents
the Cherenkov-condition.
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