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The behaviors of various confidence/credible interval constructions are explored, particularly in the
region of low event numbers where methods diverge most. We highlight a number of challenges, such as
the treatment of nuisance parameters, and common misconceptions associated with such constructions.
An informal survey of the literature suggests that confidence intervals are not always defined in relevant
ways and are too often misinterpreted and/or misapplied. This can lead to seemingly paradoxical
behaviors and flawed comparisons regarding the relevance of experimental results. We therefore
conclude that there is a need for a more pragmatic strategy which recognizes that, while it is critical to
objectively convey the information content of the data, there is also a strong desire to derive bounds on
model parameter values and a natural instinct to interpret things this way. Accordingly, we attempt to
put aside philosophical biases in favor of a practical view to propose a more transparent and self-
consistent approach that better addresses these issues.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The ability to distill experimental results in a form relevant to
theoretical models is fundamental to scientific inquiry. Yet the best
approach for this is still a matter of considerable discussion and
debate. At the heart of the issue is the desire to both objectively
quantify results in a frequentist manner and also draw relevant
inferences for specific models, which inherently requires a Bayesian
context (i.e. a choice of prior) for those models. A failure to sat-
isfactorily address both of these aspects has, in many cases, led to
misinterpretation and misapplication that have not been mitigated
by the adoption of new frequentist conventions. The impact is largest
for experiments working in the region of low numbers of signal
events, where different approaches diverge most. The confusion is
not helped by the use of forms for the display of frequentist info-
rmation that seem to suggest direct bounds on model parameter
values or relative experimental sensitivities to such models, neither
of which is necessarily the case. Suggestions that such confusion
arises from questions that should not be asked concerning models
are not satisfactory and fail to confront the fact that scientists do, in
fact, ask such questions and should therefore make use of the
appropriate formalism for these.

In fact, the goals of both objectively conveying the relevant
information content of data and deriving bounds on model para-
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meter values are not mutually exclusive, but rather are closely
linked. It is not generally possible to translate experimental results
into meaningful model constraints without specifying a prior. As
such, detailed objective information should be used to clearly
define the context for Bayesian constraints. The issue is therefore
largely one of establishing relevance and transparency.

In this paper, we briefly review the nature of various interval
constructions; highlight some apparent paradoxes that arise from
common misinterpretations; cite specific cases where experiments
have run into such issues; discuss several aspects associated with
practical implementation; and, finally, propose an approach to dir-
ectly address the above issues in a more relevant, self-consistent and
transparent manner using standard techniques.

2. Interval constructions and their meaning
2.1. Bayesian

Bayesian probabilities quantify the degree of belief in a hypoth-
esis. Given a measurement, the goal of a Bayesian approach is to
assign probabilities to the range of possible model parameter values.
By necessity, this requires an assumed context for these models
(prior), as indicated by Bayes' Theorem:

P(D|H)P(H;)

PHID) = < b(DiH, P(H))
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where P(H;|D) is the posterior probability of hypothesis H; given the
data D; P(D|H;) is the likelihood of the data assuming hypothesis H;;
and P(H;) is the prior probability for H; that defines the a priori
context relative to other model parameter values. The ratio between
Bayesian probabilities therefore provides an estimate of relative
“betting odds” for which hypotheses are most likely to be correct.

For a purely Bayesian approach, there is no relevance of the
concept of “statistical coverage” of a credible interval (the frequency
with which a large number of repetitions of an experiment subject to
random fluctuations would yield intervals that bound the correct
hypothesis), since no comparison is done to a hypothetical ensemble
— only the actual measurements matter. If desired, the effective
statistical coverage can often still be estimated for Bayesian con-
structions using Monte Carlo calculations, etc. (as shown in Appendix
A), but the credibility level that defines the construction simply
relates the actual observation directly to the model.

Bayesian credible intervals are simply defined by the relevant
portion of the posterior probability density function (PDF) that
constitutes a fraction equal to a pre-defined credibility for the
interval, CI. The way this fraction is selected may be altered to
yield lower bounds, upper bounds, central intervals, the most
compact interval, or intervals containing the highest probability
densities. For intervals, as opposed to bounds, we suggest that
using the highest probability density offers the most intuitive and
robust definition for an arbitrary probability distribution.

As a simple example, we give the construction for an upper bound
(ie. the critical value up to which integration is performed) on an
average signal strength, S, in a Poisson counting experiment where
the expected background level is B and a total of n events is observed:

Jo[(S+B)"e~S+B /mP(S) dS
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where S, is the upper bound to be determined, P(S) is the prior
probability for S, and (I is the desired credibility for the interval. In the
case where all positive values of S are a priori given equal considera-
tion (i.e. a uniform prior in which P(S) is a constant for S > 0), this can
be shown, by repeated integrations by parts, to be equivalent to

S oSup+B)"e” Sw B /m
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Thus, S, can be interpreted as denoting the upper limit on the
range of model parameter values for which the probability of
observing n events or less is not more than 1—CI, given that the
possible number of background events cannot be greater than the
total number of events observed in this measurement. If a non-
uniform prior were used instead, the form would be modified and
the interpretation would be that the upper limit is on the corre-
spondingly weighted range of model parameter values.

2.2. Standard frequentist

Frequentist probabilities are defined as the relative frequencies of
occurrence given a hypothetical ensemble of similar experiments
subject to random fluctuations. There is no such thing as a “prob-
ability” for a model parameter to lie within derived bounds — either
it does or it does not. However, if everyone derived bounds in the
same way, the correct model would be correctly bounded a known
fraction of the time (for more on statistical coverage, see Appendix A).

Rather than using the posterior probability, the Neyman con-
struction of frequentist intervals [1] starts with the probability
density function (PDF) for a given observation under a fixed hypoth-
esis that is used to construct the likelihood. For each possible
hypothesis, a portion of the possible outcomes containing the
fraction CL (frequentist confidence level) is defined. The range of
model parameter values for which a given measurement is “likely”

(ie. would be contained within that CL fraction) then defines the
confidence region. Note that this is not the same as a statement that
any given model is likely (which is Bayesian) and, indeed, the
construction is such as to avoid any direct comparison of models.
However, as before, there is an ambiguity in this construction
regarding how the PDF is used to compose the initial frequency
intervals, with common ordering choices including central, highest
probability density and most compact intervals. We will define
frequentist approaches that use an ordering principle based on the
expected frequency of observations for a given hypothesis as
“standard frequentist.” Approaches that fall outside of this include
those that use a likelihood ratio test as an alternative ordering
principle, such as Feldman-Cousins [2] (which will be discussed
separately in the next section).

For comparison, the standard frequentist construction for an
upper bound on an average signal strength, S, in a Poisson
counting experiment where the expected background level is B
and a total of n events is observed can be written as follows:

n
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where S, can thus be interpreted as denoting the upper limit on
the range of model parameter values for which n events or less
would be observed with a relative frequency of not more than
1—CL if the measurements were to be repeated a large number of
times. Note that this differs from the Bayesian formula for a
uniform prior only in the absence of the background normal-
ization. In other words, for this construction, the possible number
of background events is not constrained to be less than or equal to
the total number of all events observed in this particular measure-
ment. This is because the probability being calculated is that for
observing n events during a generic trial for an ensemble of
measurements, and does not take into account additional informa-
tion available from any particular observation (such as the fact that
the number of background events actually detected cannot exceed
n). Thus, the probability associated with any particular measure-
ment is not a meaningful concept in the frequentist approach.

This can also be seen by the fact that the lack of a background
normalization means that there will be cases for which Eq. (4) does
not yield a positive solution for S,;,. These are instances where the
observed number of events is already deemed to be less probable
than the desired confidence level. Such “empty intervals” are
perfectly allowed and, indeed, are necessary in order to guarantee
the correct statistical coverage for the frequency of observations
within the overall ensemble of hypothetical experiments. Individual
frequentist bounds, however, do not have meaning for model
parameter values by themselves. Indeed, for a case where the
confidence interval is empty, the observer knows that for this
particular data set the confidence interval does not contain the true
value of the parameter, even if the repeated construction of such
confidence intervals would correctly bound it in, say, 90% of the
cases where statistical fluctuations resulted in different data sets.
This distinction is fundamental: frequentist confidence intervals are
always statements about how often a large ensemble of hypothe-
tical experiments will bound the true value, and are never a
statement that there is a particular probability that the true value
is contained in the interval for any individual data set. In fact, in
many cases for both standard frequentist and Feldman-Cousins
intervals, the experimenters may know that it is very unlikely that
the true model is contained in the generated interval for their
particular data set. This situation often tends to conflict with the
desired interpretations of these bounds, since the question of
interest to most experimenters is the relevance of their own
particular data set for the model parameter values under study,
rather than the behavior of a large ensemble of hypothetical
experiments that were not actually performed.
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