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Axial-symmetric magnetic field is often used in focusing of particle beams. Most existing ion Low Energy
Beam Transport lines are based on solenoid focusing. Modern accelerator projects utilize superconduct-
ing solenoids in combination with superconducting accelerating cavities for acceleration of high-
intensity particle beams. Present article discusses conditions for matched beam in axial-symmetric
magnetic field. Analysis allows us to minimize power consumption of solenoids and beam emittance
growth due to nonlinear space charge, lens aberrations, and maximize acceptance of the channel.
Expressions for maximum beam current in focusing structure, beam emittance growth due to spherical
aberrations and non-linear space charge forces are derived.
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1. Lattice of periodic solenoid channel

Consider a focusing lattice consisting of a periodic sequence of
focusing solenoids of length D, field B,, distance between lenses I,
and period L= [+D (see Fig. 1). A matched beam reaches its
maximum size in the center of the solenoids, and minimum size in
the middle of drift space (see Fig. 2). The transformation matrix in
a rotating frame through a period of the structure between centers
of solenoids is given by [1]
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where 6 is the rotational angle of particle trajectory in a solenoid:
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The matrix of transformation through the period of the structure
between centers of drift space is:
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From the matrices, Eqs. (1.1) and (1.3), the value of betatron tune
shift per period, y,, is determined by

cos pt,= cos @—0 sin 0%. (1.4)

Adopting  the  expansions  cos E=1—&2/2 +§4/24 and
sin £=¢& —53 /6, the value of betatron tune shift per period reads:
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Thus, the maximum and minimum values of the beta-function
Pmax/min = M12/ Sin 4, in the channel are given by:
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Egs. (1.6), (1.7) determine the maximum Rmax = \/Pmax > and
minimum Ry, = v/fmin > matched envelope of the beam with
unnormalized emittance, 3, and negligible beam current, I=0.
Acceptance of the channel with aperture radius, a, is given by
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A=0a%/P 2. Thin lens approximation
Ao a? sin p, (1.8) If the thickness of the lens is significantly smaller than the
- L[l _%<1 B tag 9/2)] cos zg' ’ period of the structure, D/L<«1, focusing properties of the solenoid
©/2)

can be represented by the thin lens matrix with focal length f:

The acceptance, Eq. (1.8), is maximized at a betatron tune shift 1 0 D
within the range 0 < p, < 180° (see Fig. 3b, solid line). M= ( _1yf 1), f=?~ 2.1

Consequently, the betatron tune shift per period of the structure is
determined from Eq. (1.4) as:
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Fig. 1. Periodic structure of focusing solenoids. Ho ™ 9\/% = \/j; @3)
: : : From the condition |cos u,| <1, the stability criteria for particle
oscillations is expressed as 0 <L < 4f [2]. Accordingly, the accep-
tance of the channel is simplified from Eq. (1.8) as
R a .

R, max Ax T Sin Ko (2.4)
and has a maximum at the value of y,~ /2. In this case,
cos pu,=1—L/2f =0, and f =L/2 which expresses a condition of
symmetry of the channel.

The values of beta-function from Eqs. (1.6) and (1.7) are
| L L | approximated as
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Fig. 2. A matched beam in a periodic focusing structure. sIn i, sin U,
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Fig. 3. (a) Minimum and maximum beam sizes in a periodic solenoid structure with D/L=0.034: (solid line) solution from matrix analysis, Eqs. (1.6) and (1.7), (dotted line)
smooth approximation to the beam envelope, Eq. (3.26), (b) acceptance of the channel: (solid line) determined by matrix method, Eq. (1.8), (dotted line) determined from
envelope equation, Eq. (3.29).
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