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a b s t r a c t

The horizontal emittance of a storage ring beam can be reduced below the theoretical minimum of a
given magnet structure if a variation of the longitudinal field is introduced in the bending magnets. The
optimum longitudinal field variation for the generation of the lowest emittance has been calculated
numerically – and analytically for different classes of simple functions: exponential-, power-, hyperbolic-
and step-function. Constraints have been introduced for the maximum field and the minimum beta
function in the magnet. The distribution of the deflection angles to the different magnet types has been
optimized. The optimization results have been applied to an exemplary design of a lattice for a light
source with limited circumference as for instance the Swiss Light Source.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The horizontal emittance in a storage ring is given by the
equilibrium between quantum fluctuation and radiation damping
and solely defined by the magnet structure and the energy. Radia-
tion sources are targeting for small emittances in order to enhance
the brilliance of the emitted light which is inversely proportional to
the emittance. In lattices composed from many identical cells, each
containing one bending magnet (BM), the emittance scales with the
third power of the bending angle per cell and becomes minimal if
the beam is properly horizontally focused in the BM. Optimum beam
parameters can be calculated to realize the so-called theoretical
minimum emittance (TME), which is the lowest possible emittance
for a lattice cell containing a homogeneous BM.

Recent progress in accelerator technology, in particular coating
of narrow vacuum chambers with non-evaporable getter (NEG) films,
allowed the beam pipe dimensions and the magnet apertures to be
reduced. Thus magnet gradients can be increased and magnet lengths
can be reduced correspondingly, such that a larger number of lattice
cells can be accommodated within a given ring circumference, and the
bending angle per cell is correspondingly decreased. This is the
winning concept of the multi-bend achromat (MBA) lattices [1] as
first exploited by the MAX IV 3 GeV storage ring design [2], and
subsequently leading to designs for fully diffraction limited X-ray
sources like PEP-X [3]. Upgrades of existing storage rings at ESRF [4],
ALS [5] and other places follow the same concept and plan for the

exchange of the storage ring lattice by a low emittance MBA-ring
while maintaining the source points of the beam lines.

In a lattice of limited circumference a low-aperture MBA lattice
alone is insufficient to reach very low emittance. Installation of
damping wigglers as common means for emittance reduction is
impeded by lack of space. But the horizontal emittance can be
reduced below the TME of a given magnet structure by introducing a
longitudinal variation of the magnetic field in the BM. This option has
not yet been fully exploited before. In addition, the radiation from the
high field region of such a BM could well serve hard X-ray dipole
beam lines. The double feature of emittance reduction and hard
X-ray production, which makes the concept of a longitudinal gradient
superbend (LGSB) attractive in particular for compact storage rings at
moderate beam energy, will be elaborated in this paper.

After giving an historical overview on previous work and
recalling the basic equations, we will derive the general expres-
sions for the minimum emittance and the related integrals for
arbitrary longitudinal variations of the magnetic field. A numerical
optimization of the field profile will suggest classes of simple
functions to be used for an analytic optimization. The effectiveness
of four different field representations is compared under realistic
conditions, i.e. the preservation of the deflection angle and the
limitation of the magnetic field value to a technically manageable
upper limit. Numerical evaluations are accompanying the analytical
results. Finally a draft design for a compact low emittance storage ring
lattice based on these magnets is elaborated.
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2. Historical overview on longitudinal gradient bends

The first documented idea has been published in 1992 at the
Low Emittance Workshop at SLAC [6], where it was stated that the
emittance can be reduced below the value for constant magnetic
field, if a longitudinal variation of the magnetic field is introduced
which generates a third power of the inverse bending radius out of
phase with the Courant Snyder Function. A first assessment to this
idea has been made in [7]: an empirical analysis was made there
under the assumption that the bending magnet field has the
approximate form b=ð1þasÞm. An analytical solution was derived
for the minimum emittance, whereas the integrals forming the
minimum emittance were solved numerically. The same field
model was then further analyzed in [8]. In [9], a step-function
bend was considered for a possible upgrade of the ESRF lattice. A
comprehensive analysis of longitudinal field variation was pre-
sented in [10] with analytical solutions for an exponential field
variation and a polynomial approach whereas the latter could only
be optimized numerically. A superbend composed from two
dipoles of different field strength was analyzed in [11]. A thorough
and very general analysis of the minimum emittance from dipoles
with transverse or longitudinal gradients was performed in [12], in
particular a symmetric dipole with a step-function variation of the
field was analyzed in detail. This study was continued by numer-
ical optimization of field profiles of bending magnets fulfilling
different functions in a lattice [13]. Complete lattice cells contain-
ing dipoles of step-function or trapezoidal field variation were
optimized in [14]. A step-function dipole is included in the design
of the SIRIUS storage ring to provide hard X-rays for users while
also reducing the emittance by 10% [15]. The dispersion suppressor
magnets in the hybrid-7BA (seven bend achromat) lattice of the
ESRF upgrade lattice are designed as longitudinal gradient dipoles
based on permanent magnets [16].

3. Basic equations and definitions

3.1. Equilibrium emittance

The natural horizontal equilibrium emittance ϵxo, the rms
relative energy spread σδ and the radiated energy per turn ΔE
in a flat storage ring lattice are given in practical units by

ϵxo½m � rad� ¼ Cqγ2
I5

I2� I4
;

σ2
δ ¼ Cqγ2

I3
2I2þ I4

; ΔE½keV� ¼ ~C γγ4I2; ð1Þ

with γ the Lorentz factor, the constants

Cq ¼ 3:83 � 10�13 m; ~C γ ¼ 9:60 � 10�13 keV;

and the radiation integrals

I2 ¼
I

b2 ds; I3 ¼
I

jbj3 ds; I4 ¼
I
ηbðb2þ2kÞ ds; I5 ¼

I
jbj3H ds;

ð2Þ

with bðsÞ ¼ 1=ρðsÞ ¼ ðe=p ÞBðsÞ the orbit curvature, i.e. the inverse
bending radius ρ, with e the electron charge, p the electron
momentum and B the vertically oriented bending field. k½40� is
the [horizontally] focusing BM gradient and H the dispersion's
betatron amplitude,

H¼ γη2þ2αηη0 þβη02; ð3Þ

with β, α¼ �β0
=2, γ ¼ ð1þα2Þ=β the horizontal Courant–Snyder

parameters and η, η0 the dispersion and its derivative.

3.2. Symmetric and achromat bending magnets

Special considerations are given to the two most common
implementations of a BM as sketched in Fig. 1: A symmetric bending
magnet (SBM) has zero slopes of optical functions on one side and
thus can be appended to its mirror image, thus forming a BM of
double bending angle 2Φ with a symmetry point in its center. It is
used inside an MBA arc or as center bend in a triple bend achromat
(TBA) lattice. An achromat bending magnet (ABM) has zero disper-
sion on one side. It is also called dispersion suppressor and used at
the ends of an MBA arc and for double bend achromat (DBA) lattices.
The initial conditions at s¼0 are given by

SBM αo ¼ 0 η0o ¼ 0 ð4Þ

ABM ηo ¼ 0 η0o ¼ 0 ð5Þ

3.3. Minimum emittance for the homogeneous bending magnets

It results from Eq. (1) that the most efficient and elegant way to
achieve a low emittance is the minimization of the I5 integral. An
increase of I2 is limited due to high synchrotron radiation losses,
and a manipulation of I4 is limited by the requirement to preserve
longitudinal damping and to get a low energy spread. Minimiza-
tion of I5 requires a horizontal focus in each bending magnet, and a
small bending angle, such that the dispersion cannot grow to large
values. In this case I5 and with it the emittance scale cubically with
the angle per bending magnet. For an iso-magnetic lattice contain-
ing short, gradient-free homogeneous BMs of identical type,
calculation of the TME is straightforward and gives the well-
known formula [17]:

ϵxo½m � rad� ¼ Cqγ2

Jx

Φ3

12
ffiffiffiffiffiffi
15

p �
8 ðSBMÞ
3 ðABMÞ with Jx ¼ 1� I4

I2

(
ð6Þ

the horizontal damping partitioning number. Since we defined the
SBM as a half magnet as shown in Fig. 1, an unfamiliar factor
8 appears in the emittance formula. Appending the SBM to its
mirror image doubles the angle without changing the TME. Due to
the cubic scaling of the TME with angle the factor 8 cancels, and a
mirrored SBM, as commonly considered, provides a three times
lower TME than an ABM of the same angle.

Eq. (6) requires exact matching of the beam parameters at s¼0:

βo ¼
Lffiffiffiffiffiffi
15

p and ηo ¼
ΦL
6

ðSBMÞ; ð7Þ

βo ¼
6Lffiffiffiffiffiffi
15

p and αo ¼
ffiffiffiffiffiffi
15

p
ðABMÞ: ð8Þ

In case of the ABM it is sometimes more convenient to express the
matching conditions by the minimum beta function and the
position of its focus inside the magnet:

Fig. 1. Symmetric bending magnet (SBM, left) and achromat bending magnet
(ABM, right).
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