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a b s t r a c t

Transverse vibrations of doubly orthogonal slender single-walled carbon nanotubes (SWCNTs) at the
vicinity of each other are of interest. The van der Waals (vdW) forces play an important role in dynamic
interactions between two adjacent nanotubes. Using Lennard-Jones potential function, such a phenome-
non is appropriately modeled by a newly introduced vdW force density function. By employing Hamil-
ton’s principle, the equations of motion are obtained based on the nonlocal Rayleigh beam theory. In
fact, these are integro-partial differential equations and seeking an exact or even analytical solution to
them is a very difficult job. Therefore, an efficient numerical solution is proposed. The effects of the inter-
tube distance, slenderness ratio, small-scale parameter, aspect ratio, and elastic properties of the sur-
rounding medium on the free vibration of the nanosystem are addressed. The obtained results could
be regarded as a pivotal step for better realizing of dynamic behaviors of more complex systems consist
of multiple orthogonal networks of nanotubes.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since the past decade, vibrations of carbon nanotubes (CNTs)
have been of focus of attention of the communities of material,
structural, and mechanical engineering [1–9]. It is mainly related
to the excellent physical, chemical, and mechanical properties of
such newly synthesized materials [10–14] in which provide them
for a wide range of applications including sensors (both physical
and chemical) [15–17], resonators [18–20], nanofluids conveyors
[21–23], drug delivery [24–27], and micro-/nano- electromechani-
cal systems (MEMS/NEMS) [28–31]. In all above-mentioned appli-
cations, understanding the true mechanics of dynamical behavior
of CNTs will surely lead to a more efficient and optimal nanosystem.

To date, vibrations of single-walled carbon nanotubes
(SWCNTs) has been broadly examined including free dynamic
response [32–34], excitations due to a moving nanoparticle [35–
37], wave propagation [38–42], vibrations due to inside fluids flow
[43–46], and nonlinear free and forced vibrations [47–49]. Addi-
tionally, transverse vibrations of a system of doubly parallel nano-
beams were investigated [50,51]. In the latter two works, the

interactional van der Waals (vdW) forces between atoms of the
adjacent nanostructures were simply modeled by a continuous
transverse spring without careful evaluating the spring’s constant.
In a more general framework, vibrations of two- and three-
dimensional ensembles of SWCNTs were also carefully addressed
[52–54]. In all these studies, the straight individual tubes were
placed parallel to each other and at equal distances from each
other. The interactions of adjacent tubes were modeled by appro-
priate springs whose constants were methodically calculated. A
brief review of all above-mentioned works reveals that the vdW
forces between neighboring tubes have been modeled by elastic
layers whose properties were constant and uniform across the
tubes’ lengths. The unit of the spring constants is N

m2. It means that
the interactional vdW forces between two neighboring tubes was
considered as a product of the spring constant and the difference
of their transverse displacements. In an attempt for factual
modeling of such forces, the vibration problem of a system of
double-orthogonal-SWCNTs (DOSWCNTs) is visited in this paper.
The obtained results will display that the vdW forces between
two tubes are incorporated into the model by a so-called vdW force
density function of unit N

m3. In contrast to the previous works, the
present work suggests that a more pragmatic version of the vdW
force between two adjacent tubes is an integral of the product of
the vdW force density function and the difference of transverse
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displacements over the tube’s length. Due to this fact, the resulting
equations of motion are coupled integro-partial differential
equations. It is expected that such a newly established model
would lead to a more accurate prediction of free vibrations of
DOSWCNTs as well as other systems composed of SWCNTs.

The classical continuum theory (CCT) cannot capture the realis-
tic vibrations of nanostructures since the inter-atomic bonds are
not introduced to the constitutive relations [55–57]. When the
ratio of the bond’s length to the nanostructure’s length or wave-
length of the propagated wave becomes comparable, the effect of
the inter-atomic bonds becomes significant (i.e., size-dependency).
In such cases, the stress state of each point does not only depend
on the stress of that point, but also to the stress states of its
neighboring points (i.e., nonlocality). To conquer such a shortage
of the CCT, several advanced continuum theories (ACTs) have been
established. One of the most well-known theories is the nonlocal
continuum field theory of Eringen [68–71]. So far, such a theory
has been extensively employed in mechanical modeling of CNTs
[37–41,43,46,49,52–54,58,59]. Another popular ACT is the strain
gradient theory of Aifantis [60,61] which is also implemented in
modeling vibrations of CNTs [62–67].

Since flexural behavior of slender DOSWCNTs is of interest, a
nonlocal model based on the Rayleigh beam theory is developed.
In such nanosystems, the share of shear strain energy in the total
strain energy can be rationally ignored since the ratio of shear
strain energy to the flexural strain energy is fairly negligible. For
dynamic analysis of stocky CNTs, application of shear deformable
beam models would lead to more accurate results [49,53,54,63].

In the present work, using Lennard-Jones potential function, the
vdW force density function is introduced. By employing nonlocal
Rayleigh beam theory, nonlocal-integro-partial differential equa-
tions describe transverse vibrations of the nanosystem are
obtained. Seeking an analytical solution to these coupled equations
is a very difficult task. By using Galerkin approach in conjunction
with assumed mode method, the deflection fields of the nanotubes
are discretized in the dimensionless spatial domains of tubes. Sub-
sequently, the natural frequencies of the nanosystem are numeri-
cally determined. Through various parametric studies, the
influences of the slenderness ratio, intertube distance, aspect ratio,
size-dependency, transverse and rotational stiffness of the sur-
rounding elastic medium on the free vibration behavior are stud-
ied. The undertaken work can be taken into account as a primary
step for better realizing of more complex structures composed of
orthogonal membranes of SWCNTs or even multi-walled carbon
nanotubes.

2. Assessment of vdW forces between two orthogonal SWCNTs

Based on the Lennard-Jones potential function [72], the interac-
tion between two neutral atoms at distance k is given by:

UðkÞ ¼ 4�
r
k

� �12
� r

k

� �6
� �

; ð1Þ

where � is the depth of the potential well, r denotes the distance at
which the potential function becomes zero and is expressed by:
r ¼ raffiffi

26p where ra is the distance between two atoms at the equilib-
rium state (i.e., the inter-particle potential reaches its absolute min-
imum value). The vdW force between a pair of atoms i and j, f ij, is
formulated as follows:
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where ~k is the vector position of the atom j with respect to the
atom i, and ek denotes the corresponding unit base vector.
According to the Cartesian and cylindrical coordinate systems

pertinent to the orthogonal nanotubes (see Fig. 1(a) and (b)),
the walls’ geometry of these transversely deformed tubes is
described by: ðx1; y1 ¼ rm1 cos /1; z1 ¼ rm1 sin /1 þw1ðx1; tÞÞ and
ðx2; y2 ¼ rm2 cos /2; z2 ¼ rm2 sin /2 þw2ðx2; tÞÞ where d is the inter-
tube distance, 0 6 xi 6 lbi

and 0 6 ui 6 2p; i ¼ 1;2. On the basis
of the Cartesian coordinate system associated with the first
nanotube,

~k ¼ x1 � l11 � rm2 cos u2

� �
ex1 þ rm1 cos u1 � x2 þ l21

� �
ey1

þ rm1 sin u1 � rm2 sin u2 þ d� Mw
� �

ez1 ; ð3Þ

where ex1 , ey1
, and ez1 are the unit base vectors associated with the

rectangular coordinate system of the nanotube 1, rmi
is the mean

radius of the equivalent continuum structure pertinent to the ith
tube, Mw ¼ w2ðx2; tÞ �w1ðx1; tÞ, and wiðxi; tÞ represents the trans-
verse displacement field of the ith SWCNT along the z1 axis. The
interactional vdW force per unit square length of tubes due to their
relative transverse motions along the z1 axis is described by:
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24�r2
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where f z ¼ f zðx1; x2; tÞ; rCNT ¼ 4
ffiffi
3
p

9a2 denotes the surface density of the
carbon atoms, and a is the length of the carbon–carbon bond. In
order to evaluate the change in vdW force per unit square length
due to the small lateral displacements of the nanotubes, it is only
suffice to approximate Eq. (4) by the Taylor expansion up to the
first-order about the equilibrium state. By doing so, the extra trans-
verse vdW force per unit square length is calculated as:

Mf z ¼ CvdWðx1; x2ÞMw; ð5Þ

where

CvdWðx1;x2;rm1 ;rm2 ;dÞ¼�
256�rm1 rm2

9a4

�
Z 2p

0

Z 2p

0

r12 .�7�14.�8 dþ rm1 sinu1� rm2 sinu2

� �2
h i

�r6

2 .�4�8.�5 dþ rm1 sinu1� rm2 sinu2

� �2
h i

8><
>:

9>=
>;du1 du2; ð6aÞ

.ðx1;x2;u1;u2;rm1 ;rm2 ;dÞ¼ x1� l11� rm2 cosu2

� �2

þ x2� l21� rm1 cosu1
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The parameter CvdW is called the vdW force density function (since
its unit is N

m3). As it is seen in Eq. (6), radii of the nanotubes, the
intertube distance, and the location of the nanotubes’ intersection
are among the crucial factors that influence on this parameter.

To see the variation of CvdW in the spatial coordinates associated
with the nanotubes, let give an example. Consider a system of DOS-
WCNTs whose tubes cross each other at the midspan point. The
geometry of the nanosystem is as: lb1 ¼ lb2 = 30 nm,

rm1 ¼ rm2 = 1.5 nm, d ¼ rm1 þ rm2 þ 2tb, and l11 ¼ l21 ¼
lb1
2 . In order

to evaluate the double integral in Eq. (6a), Gauss quadrature
method is exploited. The pyramid of each tube is divided into 10
equal subdomains with 5 Gauss points. The graph of CvdW in terms
of dimensionless spatial coordinates of tubes, namely n1 ¼ x1

lb1
and

n2 ¼ x2
lb1

, has been demonstrated in Fig. 2. As it is seen, shooting of

the vdW force density function at the midspan point of both tubes
is so obvious. Further studies also reveal that such a fact occurs at
the vicinity of the intersection point of the tubes. As a result, a
more refined mesh should be considered for evaluating integrals
of expressions include CvdW in the regions close to the point of
intersection (see Fig. 2). In all carried out calculations in this paper,
we subdivide the lengths of tubes into Np � 1 intervals such that
about half of them are equally located in a region of length 0:1lb1

or 0:1lb2 around the intersection point. By choosing Ng Gaussian
point in each direction (or Ng � Ng in each computational cell), a
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