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a b s t r a c t

A prescription is presented for the interpolation between multi-dimensional distribution templates
based on one or multiple model parameters. The technique uses a linear combination of templates, each
created using fixed values of the model's parameters and transformed according to a specific procedure,
to model a non-linear dependency on model parameters and the dependency between them. By
construction the technique scales well with the number of input templates used, which is a useful
feature in modern day particle physics, where a large number of templates are often required to model
the impact of systematic uncertainties.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In particle physics experiments, data analyses generally use
shapes of kinematical distributions of reconstructed particles to
interpret the observed data. These shapes are simulated using
Standard Model or other theoretical predictions, and are deter-
mined separately for signal and background processes. Simula-
tions of known fundamental physics processes are run through a
detailed detector simulation, and are subsequently reconstructed
with the same algorithms as the observed data. These simulated
samples may depend on one or multiple model parameters, for
example the simulated Higgs particle mass, and a set of such
samples may be required to scan over the various parameter
values. Since Monte Carlo simulation can be time-consuming,
there is often a need to interpolate between the limited number
of available Monte Carlo simulation templates.

In particular, the statistical tests widely used in particle physics,
e.g. for the construction of confidence intervals on model para-
meters or the discovery of new phenomena, rely strongly on
continuous and smooth parametric models that describe the signal

and background processes in the data.3 These parametric models
describe parameters of interest, such as a shifting mass param-
eter or the rate of a signal process, and the so-called nuisance
parameters that parametrize the impact of systematic uncertainties.
As such, the models are often constructed in terms of those
parameters by interpolating between simulated Monte Carlo tem-
plates, thereby ensuring continuity in those parameters.

Several algorithms exist that can be used to interpolate between
Monte Carlo sample distributions [1,2]. Interpolation techniques have
been used on multiple occasions in particle physics, for example to
predict kinematic distributions for intermediate values of a model
parameter, e.g. the simulated Higgs boson, W boson or top quark
mass, or to describe the impact of systematic uncertainties, which are
often modeled as shape or rate variations about a nominal template
of a kinematic distribution.

This work describes a new morphing technique, moment
morphing, which has the advantage over existing methods in that
it is fast, numerically stable, allows for both binned histogram and
continuous templates, has proper vertical as well as horizontal
morphing (explained in Section 2), and is not restricted in the
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3 Typically, a statistical test involves the maximization of a likelihood function,
which has been built from both the parametric model and the observed data. The
maximization procedure relies on the derivatives of the likelihood with respect to
the model's parameters.
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number of input templates, the number of model parameters or
the number of input observables. In particular, the latter feature
allows the moment morphing technique to model the impact of a
non-factorizable response between different model parameters,
where varying one model parameter at a time is insufficient to
capture the full response function.

The paper is organized as follows: Section 2 describes in detail
how the moment morphing function, used to interpolate between
histograms, is constructed using one or more morphing para-
meters. Section 3 describes how the moment morphing technique
can be used to properly take into account systematic uncertainties
in a high energy physics analysis, giving an example of a typical
application. A comparison in terms of accuracy of moment
morphing with alternative morphing algorithms is provided in
Section 4. Section 5 describes the implementation of the moment
morphing algorithm in publicly available Cþþ code, including
benchmarking of its performance.

2. Construction of the morphing p.d.f.

This section details the construction of the moment morphing
probability density function (p.d.f.). The method proposed here is
based on the linear combination of input templates. The depen-
dency on the morphing parameter(s) can be non-linear, and is
captured in multiplicative coefficients and a transformation of the
template observables. Interpolation using a single morphing para-
meter is described in Section 2.1. Section 2.2 describes interpolation
using multiple morphing parameters and shows that dependencies
between morphing parameters can be readily modeled. Other
choices of basis functions for the construction of the morphing
p.d.f. are considered in Section 2.3.

2.1. Interpolation with a single morphing parameter

Consider an arbitrary p.d.f. f ðxjmÞ, where f depends on the
single morphing parameter m and describes the observables x. The
true dependency on m is not known or difficult to obtain. Instead,
the p.d.f. f has been sampled at n different values of m, with each
f ðxjmiÞ representing a known input template shape for a single
value of the morphing parameter, labeled as mi. In the following
the goal is to construct a parametric approximation of f ðxjmÞ for
arbitrary m, which is continuous and smooth in the model
parameter, as required for example by the statistical tests used
in particle physics alluded to in Section 1. There are two steps
to this.

First, given the sampling points, f ðxjmÞ can be expanded in a
Taylor series up to order n�1 around reference value m0:

f ðxjmÞ � ∑
n�1

j ¼ 0

dðjÞf ðxjm0Þ
dmðjÞ

ðm�m0Þj
j!

¼ ∑
n�1

j ¼ 0
f 0jðxjm0Þðm�m0Þ j ð1Þ

where the second equality defines f 0ðxjmÞ. For the n given values of
m follows the vector equation:

f ðxjmiÞ � ∑
n�1

j ¼ 0
ðmi�m0Þjf 0jðxjm0Þ ¼ ∑

n�1

j ¼ 0
Mijf

0
jðxjm0Þ ð2Þ

where Mij ¼ ðmi�m0Þ j defines a n� n transformation matrix.
Inverting Eq. (2) gives

f 0jðxjm0Þ ¼ ∑
n�1

i ¼ 0
ðM�1Þjif ðxjmiÞ ð3Þ

which allows us to determine the n values f 0jðxjm0Þ. Substituting
this in Eq. (1), f ðxjmÞ reads

f ðxjmÞ � ∑
n�1

i;j ¼ 0
ðm�m0ÞjðM�1Þjif ðxjmiÞ ð4Þ

which can be used to predict the template shape at any new value
of the morphing parameter given by m0:

f predðxjm0Þ ¼ ∑
n�1

i ¼ 0
ciðm0Þf ðxjmiÞ ð5Þ

which is a linear combination of the input templates f ðxjmiÞ, each
multiplied by a coefficient

ciðm0Þ ¼ ∑
n�1

j ¼ 0
ðm0 �m0ÞjðM�1Þji ð6Þ

which themselves are non-linear and depend only on the distance
to the reference points. This approach of weighting the input
templates is also known as vertical morphing. Note that the
coefficients ci are independent of the derivatives of f with respect
to morphing parameters or to the observable set x, making their
computation easy.

The coefficient for a point included in the set of input templates
is one, i.e.

ciðmjÞ ¼ δij ð7Þ
and by construction the sum of all coefficients ci equals one:

∑
i
ciðmÞ ¼ 1: ð8Þ

This turns out to be a useful normalization, as will be seen below.
To illustrate, one can consider a morphed p.d.f. using only input

templates at two values of the morphing parameter, mmin and
mmax. The coefficients ci(m) become linear in m and reduce to the
simple fractions:

cimin
¼ 1�mfrac ð9Þ

cimax ¼mfrac ð10Þ
where mfrac ¼ ðm�mminÞ=ðmmax�mminÞ, cimin

and cimax sum up to
one, and all other coefficients are zero.

Second, it may be that the sampled input p.d.f.s fi describe
distributions in x that vary strongly as a function of m in shape and
location. This is equivalent to the first and second moments (i.e.
the means and variances) of the input distributions having a
dependence on the morphing parameter m.

Since the input p.d.f.s in Eq. (5) are summed linearly, it is
imperative to translate all input distributions f iðxÞ in the sum
before combining in the morphed p.d.f. such that their locations
match up. The process of translating the input observables (but not
scaling; see below) is also called the horizontal morphing. In
addition it is necessary to take into account the change in the
width of the input distributions as a function of the morphing
parameter.

To achieve this, the mean μij and width σij of each input
distribution i and observable xj are shifted to the common values
of μ0jðmÞ and σ0jðmÞ. These are obtained by multiplying the under-
lying means and widths with the coefficients ci(m) of Eq. (6):

μ0jðmÞ ¼∑
i
ciðmÞ � μij ð11Þ

σ0jðmÞ ¼∑
i
ciðmÞ � σij ð12Þ

In order to shift the input p.d.f.s a linear transformation of each
observable is applied. For each p.d.f. i and observable j define

x0ij ¼ aijxjþbij; ð13Þ
with slope

aij ¼
σij
σ0j

ð14Þ

and offset

bij ¼ μij�μ0jaij: ð15Þ
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