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a b s t r a c t

The elastostatic problem of functionally graded circular nanobeams under torsion, with nonlocal elastic
behavior proposed by ERINGEN, is preliminarily formulated. Exact solutions are detected for nanobeams
with arbitrary axial gradations of elastic properties and radially quadratic distributions of shear moduli.
Extension of the treatment to nonlocal viscoelastic composite circular nanobeams is then performed. An
effective solution procedure based on LAPLACE transform is developed, providing a new correspondence
principle in nonlocal viscoelasticity for functionally graded materials. Displacements, shear strains and
stresses are established for nonlocal viscoelastic nanobeams made of periodic fiber-reinforced materials,
with polymeric matrix described by a MAXWELL model connected in series with a VOIGT model.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Analysis of functionally graded beams under torsion is a
research topic of major interest in engineering applications. Never-
theless, exact solutions are available only for special cross-sections
and gradations of elastic properties. Computational strategies and
effective homogenization techniques [1–18] are thus usually
adopted in order to analyze and design such structures. An elegant
solution procedure, based on a modified version of LEKHNITSKII

formalism [19], was proposed in [20] for cylindrically anisotropic
beams. Applications on laminates and novel solutions for circular
cylindrical bars, also with angular symmetry, were investigated
in [21,22]. The effects of material inhomogeneities on the torsional
response of linearly elastic isotropic bars were assessed in [23].
Analytical stress solutions for composite cylinders were given in
[24]. Further solutions, with special emphasis on end effects, were
assessed in [25,26] for cylindrically anisotropic circular tubes and
bars under thermal and mechanical loadings. Functionally graded
beams with shear moduli, defined by positive functions of the Pra-
ndtl stress function of corresponding elastically homogeneous
beams were analyzed in [27,28]. Inhomogeneous hollow cylinders
made also of isotropic and incompressible linearly elastic materials
were studied in [29–31]. However, in these contributions the con-
stitutive behavior is elastically local, with cross-sectional inhomo-
geneities, see also [32–37]. An exception was dealt with in [38] still

for local cylinders, but axially graded. The motivation of the pres-
ent manuscript is in answering the question: ’’Is it possible to
detect new exact solutions for composite viscoelastic nonlocal
nanobeams under torsion?’’ The conclusion is affirmative for
circular nanobeams with radially quadratic distributions of shear
moduli.

The plan is the following. Basic notations, assumptions and
equilibrium conditions governing circular beams are collected in
Section 2. The nonlocal elastic equilibrium problem of functionally
graded isotropic nonlocal nanobeams is formulated in Section 3.
The closed-form expression of nonlocal stresses is provided in Sec-
tion 4 by resorting to a SAINT-VENANT-type semi-inverse approach.
These fields are then transformed in LAPLACE domain in Section 5
to solve viscoelastic nanobeams governed by the ERINGEN nonlocal
law given in Section 6. Analytical solutions are detected in Section 7
for composite nonlocal viscoelastic cylinders made of periodic
fiber-reinforced materials, with polymeric matrix represented by
a MAXWELL model connected in series with a VOIGT model.

2. Preliminary assumptions and equilibrium conditions

Let us consider a circular domain X of radius R describing the
cross-section of a straight cantilever subjected to a torque M at
the free-end. Body forces are assumed to vanish and the beam lat-
eral mantle is considered to be traction-free [39]. We denote by r
the radius vector in the cross-section plane pX originating at the
centroid G and by k the unit vector of the beam z-axis thru G. R
is the linear operator performing the rotation in pX by p=2
counterclockwise and V and V are the linear spaces of translations
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associated with the EUCLID 3-D space S and with pX. Following
CLEBSH [40], we conjecture that the normal interactions between
longitudinal fibers of the beam vanish so that the CAUCHY stress
tensor Tðr; z; tÞ is expressed, in terms of the shear stress vector
sðr; z; tÞ on the cross-section at the point ðr; zÞ, by

Tðr; z; tÞ ¼
O s

sT 0

� �
ðr; z; tÞ; ð1Þ

where t stands for time. Due to the the absence of body forces, the
CAUCHY differential condition of equilibrium gives

s0ðr; z; tÞ ¼ o; div sðr; z; tÞ ¼ 0; ð2Þ

with the prime ð�Þ0 denoting partial derivative along the z-axis and
div divergence with respect to the position vector r. Since the trac-
tions on the lateral mantle are assumed to vanish, the CAUCHY

boundary condition of equilibrium takes the form

sðr; z; tÞ � nðr; z; tÞ ¼ 0; ð3Þ

where the dot � stands for inner product and n is the outward unit
normal to the cross-section boundary @X. Let us denote by
D2 :¼ divr the LAPLACE operator with respect to the position vector
r. As shown in the next section, an useful implication of Eq. (2) is
the vanishing of the divergence of the Laplacian of shear stress field

ðdiv D2sÞðr; z; tÞ ¼ 0: ð4Þ

Indeed, a cartesian evaluation gives

div s ¼ si=i ¼ 0 ) div D2s ¼ si=jji ¼ si=ijj ¼ 0; ð5Þ

where the symbol = stands for partial derivative and i; j 2 f1;2g.

3. Nonlocal isotropic elasticity

The shear stress sðr; z; tÞ is assumed to be related to the shear
strain vector cðr; z; tÞ by the isotropic nonlocal elastic law con-
ceived by ERINGEN [41]

sðr; z; tÞ � ðeo aÞ2 D2sðr; z; tÞ ¼ lðr; zÞ cðr; z; tÞ; ð6Þ

where eo is a material constant, a is the internal length. The
magnitude of eo is determined experimentally or approximated by
matching the dispersion curves of plane waves with those of atomic
lattice dynamics. For single walled carbon nanotubes [42–44] the
length scale parameter c :¼ eo a is assessed to be smaller than
2.0 nm [45]. Nonlocal constitutive relations for functionally graded
materials have been discussed in [46].

Let us assign the shear modulus in a separable form in r and z as

lðr; zÞ ¼ lrðrÞ laðzÞ: ð7Þ

The transversal shear modulus is assumed to be radially inhomoge-
neous according to the quadratic rule

lrðrÞ :¼ mkrk2 þ k; with m; k 2 R; ð8Þ

where krk is the norm of the vector r. The shear strain vector at r.h.s.
in Eq. (6) is evaluated by conjecturing that the displacement field of
the beam under torsion takes the form

uðr; z; tÞ ¼ hðz; tÞRr; ð9Þ

where h is the rotation function, about the z-axis, of cross-sections
with respect to the clamp.1 The kinematically compatible deforma-
tion writes thus as

Dðr; z; tÞ ¼ ðsym duÞðr; z; tÞ ¼
O c

cT 0

� �
ðr; z; tÞ; ð10Þ

with the shear strain vector given by

cðr; z; tÞ ¼ h0ðz; tÞRr: ð11Þ

Substituting Eqs. (7) and (11) in Eq. (6), the differential condition of
nonlocal elastic kinematic compatibility is expressed as

sðr; z; tÞ � ðeo aÞ2 D2sðr; z; tÞ ¼ lrðrÞ laðzÞ h0ðz; tÞ Rr: ð12Þ

Taking the z-derivative and the r-divergence we get the equations

s0ðr; z; tÞ � ðeo aÞ2 D2s0ðr; z; tÞ ¼ lrðrÞ ðlaðzÞ h0ðz; tÞÞ0 Rr;

ðdiv sÞðr; z; tÞ � ðeo aÞ2 ðdiv D2sÞðr; z; tÞ ¼ ðlaðzÞ h0ðz; tÞÞ0div ðlrðrÞ RrÞ:

(

ð13Þ

Resorting to Eq. (8), we get rlrðrÞ � Rr ¼ 0. It follows that, being
div Rr ¼ 0, also divðlrðrÞRrÞ ¼ rlrðrÞ � Rrþ lrðrÞdiv Rr ¼ 0.
Recalling Eqs. (2)2 and (4), we conclude that Eq. (13)2 is identically
fulfilled. Moreover, imposing the equilibrium Eq. (2)1 in Eq. (13)1,
we get

ðlaðzÞ h0ðz; tÞÞ0 ¼ 0; ð14Þ

whence the z-constancy condition follows, so that we may set

laðzÞ h0ðz; tÞ ¼ bðtÞ; with bðtÞ 2 R: ð15Þ

Eq. (15) was obtained in [38] for radially homogeneous linearly
elastic (local) beams, grading the material only along z. The tor-
sional rotation hðz; tÞ is then evaluated by integrating Eq. (15) and
by setting hð0Þ ¼ 0

hðz; tÞ ¼ bðtÞ
Z z

0

1
laðqÞ

dq: ð16Þ

As pointed out in [38], the scalar function bðtÞ is computed by
imposing the static equivalence condition around the z-axis

MðtÞ ¼
Z

X
Rr � sðr; z; tÞ dA: ð17Þ

The explicit expression of the function bðtÞ is provided in the next
section.

4. Nonlocal elastic shear stresses

The shear stress field, solution of the nonlocal elastostatic prob-
lem of functionally graded circular nanobeams under torsion for-
mulated in Section 3, is given by the formula

sðr; z; tÞ ¼ bðtÞðlrðrÞ þ 8 c2mÞ Rr

¼ bðtÞðmkrk2 þ kþ 8 c2mÞRr: ð18Þ

Note that the the physical dimensions of the parameters m and k are
½FL�4� and ½FL�2� respectively. The length scale parameter c and the
scalar bðtÞ have respectively the physical dimensions of a length
and of the inverse of a length. Proof of Eq. (18) consists of two steps.

(1) Check of equilibrium, described by Eqs. (2) and (3).
(2) Check of nonlocal elastic kinematic compatibility Eq. (12).

Let us preliminary provide a list of noteworthy identities

div ðkrk2RrÞ ¼ 0;

rðkrk2RrÞ ¼ 2Rr� rþ krk2R;
div ð2Rr� rÞ ¼ 6Rr;

div ðkrk2RÞ ¼ 2Rr;

D2ðkrk2RrÞ ¼ div rðkrk2RrÞ ¼ 8Rr:

8>>>>>>><
>>>>>>>:

ð19Þ

Due to the z-independence of Eq. (18), the differential condition of
equilibrium Eq. (2)1 is trivially verified. Eq. (2)2 follows from
Eq. (19)1. Fulfillment of the boundary equilibrium Eq. (3) is a direct
consequence of the orthogonality condition Rr � nðrÞ ¼ 0, being nðrÞ1 In SAINT-VENANT theory the rotation h is affine in the abscissa z [47,48].
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