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1. Introduction

In this report we derive the potential of a point charge and the
so-called weighting potential and weighting field of a rectangular
pad in a parallel plate geometry. These solutions are needed to
calculate the signals in e.g. silicon pixel detectors as well as
micropattern detectors with pixel or pad readout. The surface charge
density ¢ induced on the metal planes by the presence of the point
charge Q is related to the electric field E on the metal surface by
o = gyE. Knowing the potential ¢b of a point charge Q at a (possibly
time dependent) position X, ¥, Zo, the induced charge and current
on a rectangular pad centred at zero is therefore given by
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Due to Green's reciprocity theorem [1] the charge and current are
also given by
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where ¢, and Ey, = — ngw are the potential and electric field in the
detector volume, respectively, in case all charges in the detector are
removed, the pad is put to potential V,, and the rest stays grounded

[2,3]. In the following we derive the expressions for ¢, ¢, and E,,.
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2. Potential

Fig. 1a shows a point charge between two grounded metal
planes at a distance d. The potential is written as ¢; in the region
0<z<zp and ¢; in the region zo < z < d. We have
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in cylindrical and cartesian coordinates, respectively [1,4]. Jo(x) is
the Bessel function of first kind and in Eq. (4) we have defined

k= kf +I<§. For ¢, we just have to swap z and zo. The integrand

has an infinite number of complex poles at k, =inz/d and by
finding an appropriate contour in the complex plane the integral
of Eq. (3) can be expressed as the sum of the residues which
evaluates to [1]
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where Ko(x) is the modified Bessel function of second kind. Since
Ko(x) has a logarithmic singularity at x=0 the expression diverges for
r=0 and has slow convergence close to r=0. For numerical evalua-
tion it is therefore easier to focus on the integral in Eqgs. (3) and (4)
for which very efficient methods are available. For large values of k
the integrand of Eq. (3) behaves as \/2/(krx) cos (kr —r/4)e Kz -2,
The exponential behaviour therefore allows to set the upper integra-
tion limit for k to a multiple of 1/(zo—2) for precise numerical
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Fig. 1. (a) Point charge Q between two grounded metal planes. (b) Readout pad or pixel of dimension w, and w, centred at the origin.

evaluation. For values of z=z; i.e. in the plane of the point charge,
the integral however shows very slow 1/vkr decay and numerical
evaluation is difficult. We therefore apply the methods discussed in
[4] where we subtract one or more exponential terms from the
integrand which can be integrated explicitly. We can rewrite part of
the integrand in the following form:
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where N > 0 is an arbitrary positive integer. Inserting this expression
into Egs. (3) and (4) and using the relations [1]
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Since the expressions are symmetric with respect to z and zy we do
not have to distinguish between ¢, and ¢, and ¢ is therefore valid in
the entire range of 0 <z < d. The above expressions represent the
potential created by a point charge and 4N-+1 mirror charges
together with a remaining integral part: charges of —Q at positions
—2zo and —zy + 2nd and charges of +Q at positions zo and zy + 2nd.

For the maximum possible values of z,zg =d the remaining
integrand behaves as e~ 2N so for numerical evaluation of the
integral an upper integration limit as a multiple of 1/(2Nd) will be
sufficient for precise evaluation. Since J,(kr) < 1 the integral part of
Egs. (7) and (8) is always smaller than
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so we find the upper limit on the error A¢ of the calculated
potential ¢ by terminating the series at N and neglecting the
integral to be

|Ag| < Q/(8megN?d)

By bringing N to oo the error becomes zero and the field is
represented as an infinite number of mirror charges. This also
provides the mathematical proof that the procedure of an infinite
number of mirror charges converges to the correct potential. By
moving the grounded plate at z=d to infinity, only the first two
terms in Egs. (7) and (8) remain, which represents the correct
result for a point charge in the presence of a single grounded plane
i.e. a charge Q at z=z; and a single mirror charge of value —Q at
Z= —2p.
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3. Induced charge and weighting field

Using Eqgs. (1) and (4) we can now calculate the charge induced
on the rectangular pad, as shown in Fig. 1b, according to
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With Eq. (2) we can express the result through the weighting
potential ¢,, as

LAV, [ (L Wy
(X, y,z)_7 /O /0 cos (kyx) sin (kx7) cos (kyy)

« sin (kyﬂ)w dk, dk,

2 )Rk, sinh (kd) a2

We can now verify that this is indeed equal to the solution of the
Laplace equation with boundary condition ¢, (x,y,z=0)=V,, in
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