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a b s t r a c t

The graphene oxide sheets (GOs) reacted with 4,40-diphenylmethane diisocyanate (MDI) and then stearic
acid to form the functionalized graphene sheets (FGs), in order to improve their compatibility with iso-
tactic polypropylene (iPP). The iPP incorporated with FGs were adequately mixed in a Haaker mixer and
then compression molded to obtain the iPP/FGs nanocomposites. The crystallization, thermal stability
and mechanical properties of the nanocomposites together with iPP/graphite sheets (Gs) and iPP/GOs
composites were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), ther-
mogravimetric analysis (TGA), and tensile test. The FGs achieved good dispersion with exfoliated and
intercalated nanostructure and strong interfacial adhesion with iPP, which made the nanocomposites
have a significant enhancement of thermal stability and mechanical properties at low FGs loadings.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Polymer nanocomposites based on carbon black, carbon nano-
tubes, and graphite nanoplatelets attracted researchers much
attention owing to their excellent physical and chemical properties
these days. It has been found that significant variations of mechan-
ical, thermal, electrical and barrier property occurred even if incor-
porated nanofillers at a very low loadings [1–8]. Graphene is
regarded as the strongest material to date by theoretical and
experimental results and chemically the most reactive form of car-
bon due to the lateral availability of carbon atoms [9]. That is why
many researches are related to graphene as the nanofiller in poly-
mer composites. However, the performance of composites have
been generally recognized that limited by dispersion of nanofillers
and interfacial adhesion between nanofillers and polymer matrix
[10].

Several methods have reported to produce multiple or individ-
ual graphene nanosheets [11,12]. In top down process, graphene
nanosheets (GNs) can be produced by intercalation/exfoliation of
graphite or graphite oxide (GOs). The GOs are commonly used as
a starting material to produce GNs. The GOs are produced by
oxidation graphite via one of the well-known methods developed
by Brodie [13], Staudenmaier [14], and Hummers [15]. To reduce
the graphene oxide sheets back to graphene, several approaches
have been developed including thermal reaction [16,17], ultraviolet

irradiation [18] and chemical reduction using agents such as
hydrazine hydrate [19], diethylhydrazine [9], hydroquinone [20],
sodium borohydride [21], sulfur-containing compounds [22], and
Fe reduction [23].

To date, it has been successfully achieved to disperse graphene
sheets or graphene oxide sheets in polymers such as poly(methyl
methacrylate) (PMMA), poly(acrylonitrile) (PAN), poly(acrylic acid)
(PAA), polyester, epoxy resin, thermoplastic polyurethane (TPU),
poly(vinyl alcohol) (PVA) [10,24–31]. Graphene–polymer nano-
composites revealed significant improvements in electrical conduc-
tivity [9], thermal [32] and mechanical properties [29], and gas
barrier properties [33]. There are three normal methods to fabricate
graphene–polymer nanocomposites, such as solution mixing, melt-
blending, and in situ polymerization [11,34]. The solution mixing
technology can produce well dispersion of graphene sheets or
graphene oxide sheets in polymers [24,25]. However, the solvent
removal usually takes a lot of time and nanosheets restacking
happen after solvent removal. In situ polymerization method has
successfully created the polyolefin/exfoliated graphite nanocom-
posites [35]. However, the in situ polymerization also happens in
solvents. The high viscosity of even dilute dispersion of graphene
makes the polymerization be difficult.

The most economically attractive and scalable method for
dispersing nanoparticles into polymers is melt-blending. Lin et al.
[36] prepared well dispersion PE/graphene oxide nanocomposites
using melt-blending method by adopting PE-grafted-graphene
oxide. Kim et al. [37] have recently also fabricated exfoliated
graphene/PE nanocomposites via employing PE functionalized
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analogs with thermally reduced graphene. Yuan et al. [3] prepared
functionalized graphene oxide by reacting graphene oxide with
maleic anhydride grafted polypropylene and then melt-blending
with polypropylene to obtain the functionalized graphene
oxide/polypropylene nanocomposites. They found that the thermal
stability of the nanocomposites was significantly improved. In fact,
the successfully melt-blending nanocompsoites are dependent on
the thermal stability of the chemically modified graphene and
processing temperature. Thus, how to prepare the high thermal
stability chemically modified graphene becomes a main issue to
fabricate the nanocompsoites by melt-blending.

Isotactic polypropylene (iPP) is one of main engineering plastics
in commercial importance because of its cost effectiveness as well
as intrinsic properties of low density, high stiffness, good tensile
strength, and inertness toward acid, alkalis and solvents [38,39].
Materials based on iPP have been thus used in a wide range of
applications including automobile, electronic devices, packaging,
household appliances and construction industries. However, for
advanced applications, physical and chemical properties of iPP
need to be further improved or new functionalities should be
endowed. The simplest way is adding appropriate fillers to iPP
matrix can enhance its performances and so much work has been
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Fig. 1. Schematic of synthesis procedure for FG from GO.
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Fig. 3. FTIR spectra of GOs and FGs.
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Fig. 2. The X-ray diffraction spectra of Gs, GOs and FGs.
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