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a b s t r a c t

An experiment may face the challenge of real-time determination of the magnetic field vector
components present within some interior region of the experimental apparatus over which it is
impossible to directly measure the field components during the operation of the experiment. As a
solution to this problem, we propose a general concept which provides for a unique determination of the
field components within such an interior region solely from exterior measurements at fixed discrete
locations. The method is general and does not require the field to possess any type of symmetry. We
describe our systematic approach for optimizing the locations of these exterior measurements which
maximizes their sensitivity to successive terms in a multipole expansion of the field.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

An experiment may face the challenge of determining in real-
time the vector components, Bi, of the magnetic field within some
region of space over which it is impossible or impractical to carry
out a direct measurement of these field components during the
operation of the experiment. For example, suppose an experiment
requires a highly uniform magnetic field. A suitable magnetic field
coil would need to be designed and fabricated and the coil's field
would almost certainly be measured directly with a field probe as
a verification of the coil's design principles. Suppose that after
integration with the experiment the configuration of the appara-
tus and the coil precludes any such direct measurement (e.g., it
may not be physically possible to measure the field components at
multiple positions due to geometry constraints). If the nature of
the experiment is such that it would be highly desirable to
monitor the field components during the operation of the experi-
ment, one then faces such a challenge.

The general idea of our concept, as illustrated schematically in
Fig. 1, is to perform measurements of the field components at
discrete points on some surface exterior to the experiment's
sensitive volume (hereafter, we will refer to this interior sensitive
volume as the “fiducial volume”). If the volume interior to this
surface encloses no currents or sources of magnetization, such that
the current density J

!¼ 0 and the magnetization M
!¼ 0, it then

follows that the vector components of the field, Bi, and the magnetic

scalar potential, ΦM , will each satisfy a Laplace equation, which can
then be solved either numerically or analytically, providing for a
unique determination of the vector components within the interior
fiducial volume. It should be noted that the Laplace equation for

each of the vector components of the field, ∇
!2

Bi ¼ 0, holds if the
field components are expressed in terms of (Bx, By, Bz) rectangular
coordinates, but does not hold if the components are expressed in
terms of curvilinear coordinates. (For example, in spherical compo-
nents, (Br, Bθ , Bϕ) do not separately obey Laplace equations.)

One approach to the solution of this problem is to cast the
problem as a boundary-value problem, under which the vector
components are measured over a (regular) grid on the surface [1].
The interior field components can then be determined uniquely via
standard numerical techniques (e.g., [2]) for the solution of the
Laplace equation. This approach has its limitations; in particular, the
concept of a boundary-value problem requires measurements of the
boundary values over a grid spanning (nearly) the entire surface,
and then the number of interior points at which the field can be
determined is limited by the grid spacing (as is the accuracy).

The approach we propose here starts from the general result
that the solution to the Laplace equation in spherical coordinates
can be written as an expansion in radial coordinates and spherical
harmonics. If the values of the field components or the scalar
potential (equivalently, the component of the field normal to the
surface) are known at some number of exterior fixed points, a
system of linear equations can be constructed and subsequently
solved for the a priori unknown expansion coefficients in the
multipole expansion. This then provides for a unique
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determination of the field components in the interior region. Of
course, the above is well-known (e.g., [3]); however, what is novel
about our approach is that we have developed a systematic
method for optimizing the positions at which the field compo-
nents are to be measured which maximizes their sensitivity to the
successive terms in the multipole expansion, and which also
permits for discrimination between these successive terms. To
our knowledge, our method has not been published elsewhere,
although there has been previous work which proposed a less
general approach whereby measurements of boundary values over
the six faces of a rectangular volume were fitted to trigonometric
and hyperbolic functions, thus determining the interior field
components [4].

The remainder of this paper is organized as follows. We begin,
in Section 2 with a discussion of the mathematical details of our
method. Then, in Section 3, we show example results from
applications of our method to various magnetic field profiles.
Finally, we conclude with a brief summary in Section 4.

2. Method

As is well known (e.g., [3]), the general solution to the Laplace

equation, ∇
!2

f ð x!Þ¼ 0, where for our problem we have
f AfBx;By;Bz;ΦMg, can be written in spherical coordinates as a
multipole expansion. In Appendix A, we reconcile the solution to
the Laplace equation in which the m values range over
m¼ �ℓ; �ℓþ1;…; þℓ with the often-quoted and utilized form
(e.g., [5]) in which the m values instead range over only non-
negative integers m¼ 0;1;…; þℓ. Such a solution is of the form

f ðr; θ;ϕÞ ¼ ∑
1

ℓ ¼ 0
∑
þℓ

m ¼ 0
rℓPm

ℓ ð cos θÞ½aℓm cos mϕþbℓm sin mϕ�; ð1Þ

where the Pm
ℓ are the associated Legendre polynomials, and the

aℓm and bℓm are arbitrary expansion coefficients which reflect the
intrinsic properties of the field. For f ¼ Bx, By, or Bz, we rewrite
Eq. (1) as

Bið x!Þ¼ ∑
ℓ;m

Cℓmð x!Þaℓm; iþSℓmð x!Þbℓm; i; ð2Þ

where we define the Cℓm and Sℓm to be “basis functions” of the
form

Cℓmð x!Þ¼ rℓPm
ℓ ð cos θÞ cos ðmϕÞ;

Sℓmð x!Þ¼ rℓPm
ℓ ð cos θÞ sin ðmϕÞ: ð3Þ

2.1. Field component method

Suppose one can measure Bið x!Þ at N different locations in a
region exterior to the fiducial volume. We use Bið x!nÞ to denote an
exterior measurement of Bi at location x!n, where the index
n¼ 1;…;N. It then follows that we can construct a N � N system
of equations for the aℓm;i and bℓm;i expansion coefficients,

Bið x!nÞ ¼ ∑
L;M

ℓ;m ¼ 0
Cℓmð x!nÞaℓm; iþSℓmð x!nÞbℓm; i; n¼ 1;…;N; ð4Þ

as the Bið x!nÞ are known (i.e., measured) quantities, and the
Cℓmð x!nÞ and Sℓmð x!nÞ basis functions are known functions of
x!n. The upper limits L and M denote the maximum values of ℓ
and m permitted for N unknowns. For example, if N¼5, the
possible ðℓ;mÞ values would be: (0, 0), (1, 0), (1, 1), (2, 0), (2, 1);
that is, the series would be truncated at (L,M)¼(2, 1). We note that
our convention is simply to employ the N lowest-order ðℓ;mÞ
combinations. For some particular field profile it might be the case
that the selection of some non-incremental combination would be
advantageous, such as (2, 2) instead of (2, 0) as in the N¼5
example above. But, then for some different field profile, the
selection of that non-incremental term might then not be optimal.

The resulting N � N system of linear equations can then be
readily solved via standard numerical methods (e.g., Gaussian
elimination). The field component Bi everywhere within the interior
fiducial volume can then be calculated from the aℓm;i and bℓm;i

expansion coefficients. Note that one drawback of this method,
which we hereafter refer to as our “field component method”, is
that exterior measurements of Bi then provide only limited infor-
mation on the interior values of Bja i. For example, suppose that
exterior measurements are made of the Bx component. The method
would then determine Bxð x!Þ, and thus the ∂Bx=∂x, ∂Bx=∂y, and
∂Bx=∂z gradients. The constraint ∇

!� B
!¼ 0 would then permit

determination of two more gradients, ∂Bz=∂x and ∂By=∂x. Another
drawback of this method is illustrated with the following example.
Suppose one could carry out the exterior measurements at N¼5
different locations with a field probe which provides information on
all three components of the field, (Bx, By, Bz). Although one could
then reconstruct all three components within the interior fiducial
volume, the expansion for each field component would be limited
to ðL;MÞ ¼ ð2;1Þ; that is, the 5� 3¼ 15 different field component
measurements would not permit for a determination of ðℓ;mÞ terms
of higher order than (2, 1).

2.2. Scalar potential method

Alternatively, if we take f ð x!Þ¼ΦMð x!Þ in the Laplace equation
∇
!2

f ð x!Þ¼ 0, the general solution for the magnetic scalar potential
ΦMð x!Þ can, of course, also be written as a multipole expansion like
Eq. (1). Using B

!¼ � ∇
!

ΦM , it follows that the magnetic field in
(Br, Bθ , Bϕ) spherical components is of the form

Brð x!Þ¼ �1
r
∑
ℓ;m

½ℓCℓmð x!ÞaℓmþℓSℓmð x!Þbℓm�;

Bθð x!Þ¼ � 1
sin θ

∑
ℓ;m

½Δℓmð x!ÞaℓmþΛℓmð x!Þbℓm�;

Bϕð x!Þ¼ � 1
r sin θ

∑
ℓ;m

½mCℓmð x!Þbℓm�mSℓmð x!Þaℓm�; ð5Þ

where the Cℓmð x!Þ and Sℓmð x!Þ basis functions are as defined
previously in Eq. (3), and the additional basis functions Δℓmð x!Þ
and Λℓmð x!Þ are defined in terms of Cℓmð x!Þ and Sℓmð x!Þ as

Δℓmð x!Þ¼ ℓ
r
Cℓmð x!Þ cos θ�ðℓþmÞCℓ�1;mð x!Þ;

Λℓmð x!Þ¼ ℓ
r
Sℓmð x!Þ cos θ�ðℓþmÞSℓ�1;mð x!Þ: ð6Þ

B

Fig. 1. Schematic illustration of the general idea of our concept. The vector field
components in the inaccessible interior region of the experiment (the fiducial
volumes) are determined from measurements of the field components on some
surface (indicated by the dashed line) exterior to the fiducial volume.
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