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a b s t r a c t

Within the hollow-bunch approximation we study variations in the stability conditions of the coupled
synchro-betatron coherent oscillations due to common effects of the lattice chromaticity and of the
Landau damping of such oscillations. We assume that the Landau damping of coherent oscillations is
provided by octupole fields of the ring lattice. We also assume that the wakefields of the bunch decay
substantially during the revolution period of particles along the closed orbit. For this reason, the memory
of the bunch wakefields is ignored in this paper.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In our recent paper [1] we calculated the stability diagrams for
the coupled synchro-betatron coherent oscillations of a single
bunch, which interacts with its surroundings via a wideband
transverse impedance and which are suppressed due to the
Landau damping by octupole fields of the ring lattice. In these
calculations we focused on the effects of the shape of the betatron
frequency distribution functions of the bunch on the shape of the
stability diagrams of the coupled synchro-betatron coherent
oscillations. For this reason, we ignored in Ref. [1] the effects of
the lattice chromaticity on the stability of such coherent oscilla-
tions. Meanwhile, closer inspections show that the head–tail
instabilities, or damping (see in Ref. [2], or in Ref. [3]), can change
the stability conditions of the coupled synchro-betatron modes
and, hence, can change the shape and the widths of their stability
diagrams.

In this paper we study the variations in the stability diagrams
for the coupled betatron and synchro-betatron collective modes of
a single bunch due to common effects of the Landau damping and
of the head–tail instability of these oscillations due to the lattice
chromaticity. We assume that the Landau damping of coherent
oscillations occurs due to octupole fields of the ring lattice.

2. General equations

Following the paper [1], we take that the canonical transforma-
tion to the action-phase variables of unperturbed oscillations of

the bunch particles is generated using the formulae:

y¼ ay cos ϕy; py ¼ �ω0νy0ay sin ϕy;

x¼ ax cos ϕx; px ¼ �ω0νx0ax sin ϕx;
dψ y;x

dt
¼ω0νy;x;

θ¼ω0tþϕ; Δp¼ p�p0;

dϕ
dt

¼ω0η
Δp
p0

; ϕ¼φ cos ψ s;
dψ s

dt
¼ω0νs;

ϕy;x ¼ψ y;xþϕ
dωy;x

dω0
¼ψ y;xþϕ νy0;x0þ

ξy;x
η

� �
; ξy;x ¼

dνy;x
d ln p

Iy ¼
p0νy0a2y
2R0

; Ix ¼
p0νx0a2x
2R0

; η¼ 1
γ2

�α ð1Þ

here the symbols y and x mark the values related to the vertical (y)
and to the horizontal betatron oscillations of particles, Π ¼ 2πR0 is
the perimeter of the closed orbit, the suffix 0 marks the values,
calculated for the synchronous particle, E0 ¼ γMc2 is the particle
energy, νy;x;s are respectively the tunes of the betatron and of the
synchrotron oscillations of particles and α is the momentum
compaction factor of the ring.

Due to nonlinear dependencies of the lattice focusing, or
defocusing forces on the particle offsets from its position on the
closed orbit, the frequencies ωy;x and ωs may depend on the
amplitudes of the particle betatron and synchrotron oscillations. In
this paper we simplify the calculations assuming that the bunch
length is short enough to enable neglecting the nonlinearity of the
incoherent synchrotron oscillation. It means that in our calcula-
tions we take that the frequency ωs has the same value for all
particles of the bunch. Concerning the frequencies of the betatron
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oscillations of the particles we assume that those linearly depend
on the squares of the oscillation amplitudes 2R0Iy;x=ðpνy0;x0Þ. For
example, for the vertical incoherent betatron oscillations we write

ωy ¼ω0νy0þaIy�bIx ð2Þ
where the values a and b are determined by the strength of the
lattice octupole field. According to this equation, the frequency of
the vertical betatron oscillations depends on both variables
ωy ¼ωyðIy; IxÞ. These dependences produce the so-called partial
frequency spreads of the incoherent betatron oscillations in the
bunch. Following the paper [1], we call the frequency spread
ωyðIy; Ix ¼ 0Þ as the own frequency spread for the vertical betatron
oscillations. Correspondingly, we call the frequency spread
ωyðIy ¼ 0; IxÞ as the external frequency spread for the vertical
betatron oscillations. Variations in the partial frequency spreads,
generally, change the distribution functions in the frequencies of
the vertical betatron oscillations and, hence, can change the
stability conditions of coherent oscillations of the bunch as well
as the threshold number of particles in the bunch.

We consider the case of the vertical dipole betatron and
synchro-betatron coherent oscillations. For simplicity we also
assume that the interaction of the bunch with its surroundings
can be described in terms of a wideband localized transverse
coupling impedance and that the bunch wakefields completely
decay during a single turn. As usual, we take that the bunch
without coherent oscillations is described using the distribution
function

f ¼ f 0ðIy; IxÞρðφÞ
ð2πÞ3

: ð3Þ

We assume that the functions f 0ðIy; IxÞ and ρðφÞ obey the following
normalization conditions:Z 1

0
dIx

Z 1

0
dIy f 0ðIy; IxÞ ¼ 1;

Z 1

0
dφ φρðφÞ ¼ 1:

The vertical dipole coherent oscillations of the bunch are described
by a small addition δf to f. Assuming a study of the stability
condition problem, we write

f ¼ f 0ðIy; IxÞρðφÞ
ð2πÞ3

þ
ffiffiffiffi
Iy

q df 0
dIy

∑
1

m ¼ �1
χmðφÞ expðimyψ yþ imψ s� iωtÞ

ð4Þ
where my ¼ 71. If the perturbations of particle oscillations by the
bunch wakes result in reasonable weak variations of amplitudes of
coherent oscillations during the periods of incoherent betatron
oscillations of particles, the linearized Vlasov equation for δf
enables one to find out that the amplitudes χm obey the following
system of homogeneous integral equations (see, e.g. in Ref. [4]):

χmðφÞ ¼ ρðφÞ
Z 1

�1
dnΩmðnÞJmðφ½nþξ1�Þ

� ∑
1

m0 ¼ �1
FðΔωm�m0ωsÞ

Z 1

0
dφ0 φ0Jm0 ðφ0½nþξ1�Þχm0 ðφ0Þ

ð5Þ
here ξ1 ¼myξy=η,

FðωÞ ¼ �
Z 1

0
dIx

Z 1

0
dIy

Iyð∂f 0=∂IyÞ
Δωm�myðaIy�bIxÞ

; Im ω40 ð6Þ

where Δωm ¼ω�myω0νy0 and Jm(x) is the Bessel function. The
function ΩmðωÞ in Eq. (5) presents the value of the coherent
frequency shift of a coasting beam which has the same number of
particles as our bunch and which interacts with the same
transverse coupling impedance

ΩmðωÞ ¼ imy
Ne2ω0

4πpνy0
Z? ðωÞ: ð7Þ

Below we simplify the calculations assuming that

Z? ðωÞ ¼ �R0

l2?

Z J ðωÞ
ðω=ω0Þ

ð8Þ

where l? is the transverse distance from the closed orbit to the
electrodes, Z J ðωÞ is the longitudinal coupling impedance of the
bunch and electrodes.

In Eq. (5) we used an assumption that the bandwidth of the
impedance substantially exceeds the revolution frequency of the
bunch particles. For this reason, an exact value of the frequency in
the argument of Ωmy ðωÞ in Eq. (5) was replaced by a combination
frequency from the unperturbed spectrum of coherent oscillations
ω¼ω0ðnþmyνy0Þ, while the summation over discrete harmonics
of the revolution frequency n¼ω=ω0 was replaced by the inte-
gration over continuous harmonic numbers (e.g. in Ref. [4]).

Eq. (5) describes coherent oscillations of a bunch with coupled
betatron and synchro-betatron modes. It is clear that such a
coupling will be strong only in cases, when the coherent frequency
shift of the bunch Δωm becomes comparable or higher than the
frequency of synchrotron oscillations of particles ωs. Typically,
these general integral equations are too complicated to enable
their solution in an analytic, or in a numerical form. In order to
avoid this embarrassment and to focus on the effect of the Landau
damping and of the head–tail effect on the stability of the coupled
synchro-betatron modes of the bunch, we consider a simplified
model, where all particles of the bunch have equal amplitudes of
the synchrotron oscillations

ρðφÞ ¼ δ
φ2�φ2

0
2

� �
: ð9Þ

In this case and for relativistic energies of particles (γb1), the
solutions to Eq. (5) read

χmðφÞ ¼ Cmδðφ2
0�φ2Þ ð10Þ

which replaces the system of integral equations in Eq. (5) by the
infinite system of algebraic equations for amplitudes Cm

Cm ¼ � imyNe
2c

4πpνy0l
2
?

Z 1

�1

dn Z J ðnÞ
n

Jmðnþφ0ξ1Þ

� ∑
1

m0 ¼ �1
FðΔωm�m0ωsÞJm0 ðnþφ0ξ1ÞCm0 : ð11Þ

Defining in these equations ζ ¼φ0ξ1 and x¼Δωm=ωs, we obtain

Cm ¼w ∑
1

m0 ¼ �1
Bm;m0Fðx�m0ÞCm0 ð12Þ

where1

w¼ myNe
2

4πpνy0l
2
?ωs

ð13Þ

and

Bm;m0 ¼ c
Z 1

�1

� iZ J ðnÞ
n

 !
JmðnþζÞJm0 ðnþζÞ dn ð14Þ

Fðx�mÞ ¼ �
Z 1

0
dIx

Z 1

0
dIy

Iyð∂f 0=∂IyÞ
x�m�myðaIy�bIxÞ=ωs

: ð15Þ

In Eq. (12) the effects of the Landau damping are described by the
factors Fðx�m0Þ, while the head–tail instabilities are described
by the matrix elements Bm;m0 . This factorization of the matrix in
Eq. (12) can substantially simplify numerical calculations with this

1 For a bunch in a strong focusing storage ring the factor 1=νy0 in Eq. (13)
should be replaced by the ratio βy0=R0, where βy0 is the value of the β-function at
the location of the coupling impedance (e.g. in Ref. [4]).
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