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a b s t r a c t

This work proposes an efficient framework for prediction of filled elastomer damping properties based on
imaged microstructures. The efficiency of this method stems from a hierarchical multiscale modeling
scheme, in which the constitutive response of subcell regions, smaller than a representative volume
element (RVE), are determined using micromechanics; the resulting constitutive parameters then act
as inputs to finite element simulations of the RVE, from which damping properties are extracted. It is
shown that the micromechanics models of Halpin–Tsai and Mori–Tanaka are insufficient for modeling
subcells with many filler clusters, and thus these models are augmented by an additional interaction
term, based on stress concentration factors. The multiscale framework is compared to direct numerical
simulations in two dimensions and extended to predictions for three dimensional systems, which include
the response of matrix–filler interphase properties. The proposed multiscale framework shows a
significant improvement in computational speed over direct numerical simulations using the finite
element method, and thus allows for detailed parametric studies of microstructural properties to aid
in the design of filled elastomeric systems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Filled elastomeric polymers have found many applications in a
variety of fields spanning the automotive [1,2], civil engineering [3]
and even food packing industries [4]. In many applications elasto-
mers provide desirable damping or energy dissipation properties
but can lack the strength needed to carry structural loads or resist
wear. The addition of fillers adds strength to elastomer systems but
can reduce damping properties as shown in [2,5]. Wang [2] gives a
specific example where it is shown that the wet grip of tires is im-
proved by increasing damping property values at room tempera-
ture. The addition of strengthening fillers, however, acts against
these wet grip improvements by decreasing room temperature
damping values. Thus, as damping decreases, performance de-
creases as well, which creates a design dilemma, trading perfor-
mance with strength.

A powerful tool to aid in this design decision would be one that
could accurately predict the damping properties of an existing
material while simultaneously allowing for parameterized studies
of new virtual materials. This model would allow a designer to

determine if a material meets both the strength and damping goals
before the material is produced and to gage what modifications are
needed before production. Such a model is the goal of this work.
This model will be based on the premise that knowledge of the
three dimensional (3D) morphology of a filled system (for example
from sectioned scanning electron microscopy) is key to accurate
computational models. The major challenge to be addressed is that
direct numerical simulations (DNS) using computational tools such
as molecular dynamics or the finite element method (FEM) can be
prohibitively slow if not intractable when modeling a 3D micro-
structure on the scale of a representative volume element (RVE).
Thus, a multiscale approach is proposed here using micromechan-
ics to homogenize the morphology of sub-RVE scale subcells. A
coarse finite element model is then used to simulate the combined
response of these subcells, resulting in a reduced computation size
as compared to DNS of the entire microstructure. While a homog-
enized model cannot account for all of the information included in
direct simulations, the advantage in computational speed will be
substantial, making it a powerful tool for materials design of filled
elastomer systems.

2. Background

Two micromechanics models are popular for representing the
effective stiffness of a filled composite and will form the basis for
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the proposed work. These are the Mori–Tanaka [6] and Halpin–Tsai
[7] models. Both predict the stiffness tensor, L, of a matrix/filler
composite material. The Mori–Tanaka model and the self-consis-
tent model (on which Halpin–Tsai model is based2) both account
for the interaction of filler inclusions by allowing a single inclusion’s
stress to be altered by the presence of other inclusions. The author
will define this as a weak interaction, in that, the explicit increase
in stress due to a pair or group of inclusions in not modeled. The
extensions proposed in Section 6 will attempt to capture a strong
interaction between inclusions by modeling stress risers based on
the influence of adjacent fillers.

The application of these models to viscoelasticity is achieved by
using the elastic–viscoelastic correspondence principle. The details
of which are given in the work of Brinson and Lin [10]. In short, an
elastic modulus, such as Young’s modulus, can be viewed as com-
plex and a function of frequency, x. The complex Young’s modulus
is given as

E�ðxÞ ¼ E0ðxÞ þ iE00ðxÞ; ð1Þ

where E0 and E00 are the storage and loss modulus respectively and
i ¼

ffiffiffiffiffiffiffi
�1
p

. Where E0 represents the elastic response in-phase with
the strain loading and E00 represents the response 90� out-of-phase
with the loading due to time dependent viscoelastic effects. The ra-
tio of the loss to storage modulus will be referred to here as tan d
(where d is the phase lag of the material) and is proportional to
the energy dissipation or damping of the system [2]

tan d ¼ E00

E0
: ð2Þ

This value can be directly related to properties of importance to
many engineering applications (such as tire wet grip) and thus this
work will focus on determining tan d for a filled elastomer.

Throughout this document ð�Þ� will represent complex values
and ð�Þm and ð�Þf will represent matrix and filler properties respec-
tively. Using this notation, consider a composite with a complex
Young’s modulus in the loading direction, �E�yy. If this composite
consists of a matrix material with a complex Young’s modulus of
E�m and a filler material with an aspect ratio, , a volume fraction,
cf , and a Young’s modulus, Ef , then the Halpin–Tsai model can be
expressed in a complex form as,

�E�yy

E�m
¼ 1þ 2 cf g�

1� cf g�
; ð3Þ

g� ¼ ðEf =E�mÞ � 1Þ
ðEf =E�mÞ þ 2

; ð4Þ

from which tan d can be determined. Likewise, if only two phases
are considered, then E� of the composite can be determined from
the complex Mori–Tanaka stiffness tensor [10], given as

L� ¼ L�m I � cf ½S�f cm þ cf I þ ðL�f � L�mÞ
�1L�m�

�1n o�1
; ð5Þ

where I is a fourth-order identity tensor, L�m is the complex matrix
stiffness, Lf the filler stiffness and S�f the complex Eshelby tensor as
defined in [11].

Brinson and Lin [10] have studied L� using Mori–Tanaka and
have shown good agreement with finite element simulations of a
periodic computational unit cells with a single inclusion. Brinson’s
work, however, was not intended to model larger cells with many
interacting inclusions.

A number of works have included a region of modified proper-
ties between the filler and matrix, known as the interphase region
(or IP region), into micromechanical models. Gusev and Lurie [12]

used a four phase model of spherical filler particles to predict tan d
for ordered and random microstructures, but used viscoelastic
models only in the interphase regions at a single frequency (1 ra-
dian/s). Liu and Brinson [13] have also carried out detailed finite
element analysis to inform models of IP effects by numerically
computing a strain concentration tensor for various inclusion
geometries, such as nanotubes and nanoplates. This analysis re-
quires a specific finite element analysis for all filler geometries
and thus may become computationally expensive for arbitrarily
complex microstructures. A similar approach was employed by
Song and Zheng [14]. This model introduced a scalar strain ampli-
fication factor pre-multiplying the complex matrix modulus of a
filled system. The amplification factor was expressed in an semi-
empirical form accounting for a number of microstructural param-
eters but also used empirical factors to match experimental data.

The model presented here will be capable of including IP effects
but will first focus on computing mechanics of a sub-RVE cell con-
taining many interacting filler particles. Then the IP properties will
be added for a 3D demonstration. The model will rely on extracting
data from a microstructural image. This image is broken down into
binary voxels which represent either matrix or filler and are illus-
trated in Fig. 2. A recent work by Mishnaevsky [15] used 2D voxel
based images such as in Fig. 2 combined with micromechanics, to
predict the stiffness of complex microstructures. However, only
isostress (Reuss) and isostrain (Voigt) models were used.

The work of Deng et al. [5] used this voxel representation to
determine the interphase properties of a filled polymer system
by comparing finite element analysis of a 2D, 300 � 300 voxel,
reconstructed image to experimental results. This work was ex-
tended to 3D in the study by Breneman et al. [16]. For both of these
works, interphase thickness was limited to integer multiples of the
mesh size. The proposed model will speed up the voxel based cal-
culations of Deng et al. and Breneman et al. and also allow for more
flexibility in interphase thickness modeling.

The work shown here uses both Halpin–Tsai and Mori–Tanaka
models extended to capture strong interactions between particles
(and IP in 3D) and will also capture arbitrarily complex structures
through the voxel representations.

3. Material properties

In this work, elastomeric polymers with stiff fillers will be ad-
dressed. A viscoelastic polymer with frequency dependent proper-
ties will be used for the matrix. Values of matrix properties E0m and
E00m used in this work are based on the soft material studied by Brin-
son and Lin [10].

The polymer matrix is considered nearly incompressible with a
Poisson’s ratio of mm ¼ 0:48. The density of both phases is consid-
ered small (qm ¼ qf ¼ 1� 10�9 kg=m3) to avoid any inertial effects
in finite element analysis which are absent in micromechanical
modeling and negligible in dynamic mechanical analysis (DMA)
testing used to characterize viscoelastic properties. The filler is
considered to be stiff as compared to the matrix and of a brittle
nature. Thus, the filler is considered to have Ef ¼ 1� 109 Pa. A filler
Poisson’s ratio of mf ¼ 0:4 is used in this work based on the value
used in [5]. The values of Ef and mf are considered frequency
independent.

4. Finite element model

Finite element modeling will be used for two purposes in this
work: first, as a verification tool for both subcell and cell models,
and second, as an RVE level simulation tool of the cell (see
Fig. 1). The properties of an RVE are defined in the micromechanics
text [11]. For this work, an RVE cell (Fig. 1a) is broken down into

2 The Halpin–Tsai equations simplify the self-consistent approaches of Hermans
[24] and Hill [9] as summarized in [8].
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