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a b s t r a c t

A theory is developed to calculate both the longitudinal and transverse impedances of magnetic as well
as resistive bellows with cylindrical symmetry that is sandwiched between chambers with perfectly
conductive metal fittings. Analytical estimations of the impedances are necessary because the skin depth
is too small to make sufficiently tiny mesh sizes in current numerical codes. The impedances of bellows
made of materials having both large conductivity and permeability are drastically increased owing to
magnetic effects, compared with those of bellows made of perfectly conductive materials.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The 3 GeV rapid cycling synchrotron (RCS) in Japan Proton
Accelerator Research Complex (J-PARC) [1] is one of the facilities
[2,3] aiming at MW-class output beam power. At the RCS, the
significant impacts of the fields from the extraction beam trans-
port line to the circulation beams were found at the early beam
commissioning stage [4]. In general, lattice imperfections break
the super-periodicity of rings and excite undesirable resonances
[5], which makes it difficult to generate high-intensity beams in
the rings. Thus, Hotchi et al. have done the simulation studies and
proposed to shield the leakage fields to perform high-intensity
beams [6]. Accordingly, Kamiya et al. fabricated the chambers and
bellows made of permalloy [7], which are now installed and are
successfully shielding the field from the extraction beam transport
line from leaking into the beam circulation area [8].

On the other hand, when the chambers are made of resistive
materials, the resistive wall impedances are excited by a passage of
the beam [9,10]. In the conventional formulae for the resistive wall
impedance [9,10], the dielectric constant and the magnetic perme-
ability are assumed to be those of vacuum, i.e., ε0 and μ0, respectively.
However, when the chambers are made of materials where both
magnetic permeability and conductivity are high, such as permalloy
(typical values of the conductivity and the initial relative permeability
of permalloy are 1:5� 106–1:8� 106=Ωm and 30 000–75 000,
respectively [11]), the coupling impedance due to the magnetic
permeability as well as the conductivity should be considered.
Resistive wall impedances have been extensively studied by many
researchers [12–14]. In those studies, the effects of both conductivity
sc and relative permeability μr are included. To make matters worse,
the longitudinal and transverse impedances are about

ffiffiffiffiffiμr
p

times

larger than the conventional resistive wall impedance for thick
chambers and relativistic beams.

Here arises the question of to what degree are the impedances
of other structures made of resistive and magnetic materials
enhanced, compared with structures made of perfectly conductive
materials. In this study, we focus on the case of bellows made of
permalloy.

Recently, numerical simulation codes have become practical,
powerful tools to evaluate impedances [15,16]. When the bellows
are made of perfectly conductive materials, the tools accurately
estimate the coupling impedances. However, when the bellows are
made of resistive materials, it is almost impossible to numerically
evaluate them, because the skin depth is so small that a suffi-
ciently tiny mesh size cannot be made in the codes. Accordingly, it
is necessary to analytically investigate the coupling impedance of
bellows made of materials having finite magnetic permeability as
well as conductivity.

A pioneering study that analytically investigated the impe-
dances of bellows made of perfectly conductive materials was
conducted by Kheifets and Zotter [17]. They estimated the impe-
dance of infinitely long bellows. In real accelerators, the bellows is
sandwiched between chambers with metal fittings, and the radial
size of the bellows is typically larger than the radius of the
chamber. Consequently, a gap appears between the chambers
and as does a space outside the gap. Recently, a theory of the
impedance of a gap with azimuthal symmetry has been developed
[18]. In this paper, the impedance of such three-dimensional
bellows that is sandwiched between the chambers is analytically
investigated by generalizing the theory of gap impedance. The
effects of magnetic permeability and conductivity of the bellows
are included as well.
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In Section 2, the theory is developed to obtain the expressions
for both the longitudinal and transverse impedances, especially in
the low-frequency region. The theoretical results and the numer-
ical results obtained with the simulation code ABCI [15] are also
compared in this section. The paper is summarized in Section 3.

2. Impedances of bellows

2.1. Configuration of bellows

Let us consider a cylindrically symmetric bellows. A schematic
picture of the bellows that is sandwiched between chambers with
metal fittings is shown in the left figure of Fig. 1. Cylindrical
coordinates ðρ;θ; zÞ are used as global coordinates. The radius of
the chamber and the longitudinal length of the bellows are a and
g, respectively. The minimum and the maximum radial sizes of the
bellows are 2R and 2Rþd, respectively. Typically, the radial size of
the bellows is larger than that of the chamber. Consequently, a gap
appears on ðρ¼ a;0oθo2π; �g=2ozog=2Þ and forms a space
in ðaoρ;0oθo2π; �g=2ozog=2Þ. As shown in the left figure in
Fig. 1, let us call it the space cavity.

A scaled figure of the cavity is shown in the right of Fig. 1. The
period of the bellows is L. Cartesian coordinates ðξ;η; ζÞ are used as
local coordinates. Following Ref. [17], the dimensionless variables

w¼ η
R
; ð1Þ

u¼ 2πξ
L

; ð2Þ

ε¼ 2πR
L

ð3Þ

can be introduced and utilized if necessary.
The surface of the bellows is described as

wb ¼ 1þΔð1þ cos uÞ ð4Þ
where

Δ¼ d
2R

: ð5Þ

2.2. Formal expressions for longitudinal impedance

Let us start with electromagnetic fields derived from the
interaction between a beam and the gap. We assume that the

beam has a cylindrically uniform density with a radius of s, and its
total charge is 1 C/m. That is, its current density is given by

jz ¼ βcð1�Θðρ�sÞÞe� jkzþ jωt=ðπs2Þ ð6Þ
where j is the imaginary unit, ω¼ 2πf , f is the frequency, ΘðxÞ is
the step function, k¼ω=βc, β¼ v=c, v is the velocity of the beam,
and c is the velocity of light.

Now, let us calculate the excited electromagnetic fields. When
the radius of chamber a is larger than the gap size g, the fields for
ρra are approximately written as [18]

Ez ¼
jcZ0

πs2γ
1

k
�sI0ðkρÞK1ðksÞ�

sI0ðkρÞI1ðksÞK0ðkaÞ
I0ðkaÞ

 !
e� jkz

þV1

2π

Z 1

�1
dh e� jhzJ0ðΛρÞ

J0ðΛaÞ
2 sin

hg
2

hg
ð7Þ

Hθ ¼
βc
πs K1ðksÞþ

I1ðksÞK0ðkaÞ
I0ðkaÞ

 !
I1ðkρÞe� jkz

þV1

2π
jkβ
Z0

Z 1

�1
dh e� jhz J1ðΛρÞ

ΛJ0ðΛaÞ
2 sin

hg
2

hg
ð8Þ

Eρ ¼ cZ0

πs K1ðksÞþ
I1ðksÞK0ðkaÞ

I0ðkaÞ

 !
I1ðkρÞe� jkz

þV1

2π
j
Z 1

�1
dh e� jhzhJ1ðΛρÞ

ΛJ0ðΛaÞ
2 sin

hg
2

hg
ð9Þ

for ρos, and
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for ρ4s, respectively, where k ¼ k=γ, γ is the Lorentz factor, V1 is
the voltage of the gap, Z0ð ¼ 120πÞ is the impedance of free space,
Im(z) and Km(z) are the modified Bessel functions, Jm(z) is the

Bessel function, and Λ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2β2�h2

q
[19]. The time dependence of

the fields is assumed to be harmonic, and it is expressed as the
complex exponential ejωt .

Because the coupling impedance ZL is defined as the average of
the longitudinal electric field (normalized by the beam current)
over the beam cross-section, the average value of Ez (expressed by
Eq. (7) over ρ) gives the longitudinal impedance as

ZL ¼ ZL;spþZL;bellows ð13Þ
where ZL;bellows is the impedance of the bellows:

ZL;bellows ¼ �
4V1I1ðksÞ sin

kg
2

cβskI0ðkaÞkg
ð14Þ

Fig. 1. A schematic picture of bellows sandwiched between chambers with metal
fittings. The left figure shows the overall view using global coordinates (ρ; θ; z), and
the right figure shows the scaled figure of the part of the cavity in local coordinates
(ξ; η; ζ).
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