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a b s t r a c t

Free transverse vibration of cracked nanobeams is investigated in the presence of the surface effects. Two
nanobeam types, thin and thick, are studied using two beam theories, Euler–Bernoulli and Timoshenko.
The influences of crack severity and position, surface density, rotary inertia and shear deformation, nano-
beam dimension, mode number, satisfying balance condition between the surface layers and the bulk,
boundary conditions and satisfying compatibility and boundary conditions with appropriate resultant
moment and shear force are studied in details. It is found out that satisfying compatibility and boundary
conditions with the resultant moment and shear force in presence of the surface effects and considering
surface density neglected in previous work have significant effects on the natural frequencies of cracked
nanobeams. In addition, rotary inertia and shear deformation cause a reduction in the crack and surface
effects on the natural frequencies.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

According to application of nanobeams as nanosensors, actua-
tors, nanogenerators, transistors, diodes and resonators in nano-
electromechanical systems and in biotechnology [1–5] it is
important to investigate the vibrational behavior of nanobeams.
In addition, structures at nanometer length scale are known to ex-
hibit size-dependent behavior [6–8]. Since the surface-to-bulk ra-
tio is large in nanostructures accordingly, the surface effects
cannot be ignored [9]. Gurtin and Murdoch [10,11] presented a
3D theory based on continuum mechanics concept that takes into
consideration the effects of surface energy. In their work, a surface
is regarded as a mathematical deformable membrane of zero thick-
ness fully adhered to the underlying bulk material. The equilibrium
and constitutive equations for the bulk are the same as those in the
classical theory of elasticity. In addition, a set of constitutive equa-
tions and the generalized Young–Laplace equation are applied to
the surface. Using the model proposed by Gurtin and Murdoch
[10,11], He and Lilley [12] investigated the surface effects from sur-
face stress and surface elasticity on the elastic behavior of nano-
wires in static bending. Lu et al. [13] presented a general thin
plate theory including the surface effects which can be used for

size-dependent static and dynamic analysis of plate like thin film
structures. Nazemnezhad et al. [14] considered the surface effects,
including the surface density, the surface stress and the surface
elasticity, on the nonlinear free vibration of Euler–Bernoulli nano-
beams. In their work, they assumed that the normal stress, rzz, var-
ies linearly through the nanobeam thickness and satisfies the
balance conditions between the nanobeam bulk and its surfaces.
It was showed that the effect of the surface density became more
by increasing the mode number although it was independent of
the vibration amplitude.

In the literatures above, it is assumed that the structures are in-
tact or free from defects, while it is known that defects can change
the mechanical behaviors of structures. For example, cracks, as a
common defect in structural elements, can reduce the natural fre-
quencies of the structures because they become more flexible in
presence of the cracks. Therefore, the understanding and modeling
of defects can improve the design of Nanoelectromechanical Sys-
tems (NEMS) [15–19]. There are a few studies in which the effects
of the defects are considered. In the work done by Luque et al. [15],
transverse, atomically sharp surface cracks with circular fronts of
different depths were introduced to evaluate their effect on the
mechanical strength of the nanowires using molecular dynamic
simulation. Longitudinal and flexural vibrations of cracked nano-
beams were studied within the framework of the nonlocal Euler–
Bernoulli and the nonlocal Timoshenko theories [16–18]. The only
work that the transverse vibration of cracked Euler–Bernoulli
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nanobeams was studied in presence of the surface effects was the
one done by Hasheminejad et al. [19]. They considered the influ-
ences of the surface elasticity and surface tension. Moreover, the
balance condition between the surface layers and the nanobeam
bulk was not satisfied and the surface density was neglected.

From literature, it is understood that the effects of the rotary
inertia and the shear deformation on the free vibrations of cracked
nanobeams are not examined when the surface effects are in-
cluded. Also, the influences of satisfying the balance condition
and the surface density effect are not reported. Therefore, in this
article, the influences of three parameters, including the rotary
inertia and shear deformation, the surface density and satisfying
the balance condition, on the free transverse vibration of cracked
nanobeams are investigated. To this end, governing equations of
the cracked nanobeams incorporating the surface effects are
obtained based on the Timoshenko and Euler–Bernoulli theories.
A linear variation for the normal stress, rzz, is assumed in order
to satisfy the balance condition. The influences of crack position,
crack depth, mode number and dimension of the nanobeam on
the natural frequencies of the simply-simply and clamp–clamp
nanobeams are examined.

2. Problem formulation

In this section, the governing equations of a nanobeam in pres-
ence of the surface effects are derived. To this end, we consider a
nanobeam with rectangular cross section with length L (0 6 x 6 L),
width b (�0.5b 6 y 6 0.5b) and thickness, H = 2h (�h 6 z 6 +h).

2.1. Surface effects

At the micro/nanoscale, the fraction of energy stored in the sur-
faces becomes comparable with that in the bulk, because of the rela-
tively high ratio of surface area to volume of nanoscale structures;
therefore the surface and the induced surface forces cannot be
ignored. The constitutive relations of the surface layers, S+ (upper sur-
face) and S� (Lower surface), given by Gurtin and Murdoch [10,11] as

s�ab ¼ s�0 dab þ ðl�0 � s�0 Þðu�a;b þ u�b;aÞ þ ðk
�
0 þ s�0 Þu�c;cdab

þ s�0 u�a;b; s
�
a3

¼ s�0 u�3;a ð1Þ

where s�0 are residual surface tensions under unconstrained condi-
tions, k�0 and l�0 are the surface Lame constants on the surfaces S+

and S� which can be determined from atomistic calculations [20],
dab is the Kronecker delta and u�a are the displacement components
of the surfaces S+ and S�. If the top and bottom layers have the same
material properties, the stress–strain relations of the surface layers,
i.e. Eq. (1), can be reduced to the following relation for nanobeams

sxx ¼ s0 þ Esux;x; Es ¼ 2l0 þ k0; snx ¼ s0un;x ð2Þ

where n denotes the outward unit normal. The equilibrium rela-
tions for the surface layers can be expressed in terms of the surface
and bulk stress components as

sia;a � Ti ¼ q0€us
i ð3Þ

where i = x, n, t; a = x, t; q0 denotes surface density; T is the contact
tractions on the contact surface between the bulk material and the
surface layer; t is the tangent unit vector; and €us

i denotes the accel-
eration of surface layers in the i-direction.

In the classical beam theory, the stress component, rzz, is ne-
glected. However, rzz must be considered to satisfy the surface
equilibrium equations of the Gurtin–Murdoch model. It is assumed
that bulk stress, rzz, varies linearly through the nanobeam thick-
ness as follow

rzz ¼
1
2
ðrþzz þ r�zzÞ þ

z
H
ðrþzz � r�zzÞ ð4Þ

By considering Eq. (2) and satisfying Eq. (3) both of rþzz and r�zz

are obtained. Therefore, Eq. (4) can be rewritten as

rzz ¼
1
2
ðs0uþz;xx � s0u�z;xx � q0€uþz þ q0€u�z Þ

þ z
H
ðs0uþz;xx þ s0u�z;xx � q0€uþz � q0€u�z Þ ð5Þ

2.2. Governing equations of nanobeams

2.2.1. Timoshenko beam theory
The bending moment and vertical force equilibrium equations

including rotary inertia, shear deformation and surface effects
can be expressed as follow [21]

dM
dx
þ
Z

s
sxx;xzds� Q ¼

Z
A
q€uxzdAþ

Z
s
q0€us

xzds ð6Þ

dQ
dx
þ
Z

s
snx;xnzds ¼

Z
A
q€uzdAþ

Z
s
q0€us

nnzds ð7Þ

where sxx and snx are nonzero membrane stresses due to surface en-
ergy; q is the bulk density. Q and M are the stress resultants defined
as

Q ¼
Z

A
rxzdA; M ¼

Z
A
rxxzdA ð8Þ

Bulk stress–strain relations of the nanobeam can be expressed
as
rxx ¼ Eexx þ mrzz; rxz ¼ 2Gexz ð9Þ

where E is the elastic modulus, m is the Poisson’s ratio and G is the
shear modulus. Defining the displacement fields as Timoshenko
beam theory
ux ¼ z/ðx; tÞ; uz ¼ wðx; tÞ ð10Þ

where /(x, t) and w (x, t) denote the rotation of cross section and
vertical displacement of mid-plane at time t, respectively. So, the
nonzero strains are given by

exx ¼
@ux

@x
¼ z

@/ðx; tÞ
@x

; exz ¼
1
2

@ux

@z
þ @uz

@x

� �

¼ 1
2

/ðx; tÞ þ @wðx; tÞ
@x

� �
ð11Þ

Substituting Eq. (10) into Eq. (2) we have

sxx ¼ s0 þ zEs @/
@x

; snx ¼ s0
@w
@x

nz; s�nx ¼ �s0
@w
@x

ð12Þ

The relative bulk stresses can be presented by substituting Eq.
(12) into Eq. (5) and then into Eq. (9)

rzz ¼
2z
H

s0
@2w
@x2 � q0 €w

 !
; rxx

¼ E z
@/
@x

� �
þ 2tz

H
s0
@2w
@x2 � q0 €w

 !
; rxz ¼ Gk

@w
@x
þ /

� �
ð13Þ

where k denotes shear correction coefficient. By substituting Eq.
(13) into Eq. (8) and considering Eq. (12), Eqs. (6) and (7) can be
rewritten as follow

ðqAþ 2bq0Þ
@2w
@t2 ¼ kGA

@/
@x
þ @

2w
@x2

 !
þ 2bs0

@2w
@x2 ð14Þ

ðqI þ q0I�Þ @
2/

@t2 þ kGA /þ @w
@x

� �

¼ ðEI þ EsI�Þ @
2/
@x2 þ

2ms0I
H

@3w
@x3 �

2mq0I
H

@3w
@x@t2 ð15Þ
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