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a b s t r a c t

In this study, the large-amplitude vibration of non-homogenous orthotropic composite truncated conical
shell is investigated. It is assumed that the Young’s moduli and density of orthotropic materials vary
exponentially through the thickness direction. The basic equations of non-homogenous orthotropic trun-
cated conical shell are derived using the finite deflection theory with von Karman–Donnell-type of kine-
matic non-linearity. Then, foregoing equations are solved using the Superposition principle, Galerkin and
Semi-inverse methods and the frequency- amplitude relationship is found. Finally, carrying out some
computations, the effects of non-homogeneity, orthotropy and conical shell characteristics on the nonlin-
ear vibration characteristics have been studied.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, new types of composite materials have been
used in engineering and many investigations consider non-homo-
geneous orthotropic materials. In various technological situations
are demanding that the non-homogeneity of orthotropic materials
should be taken into account for the vibration behavior of struc-
tural elements. The non-homogeneity of the materials stems from
the effects of humidity, surface and thermal polishing processes
and methods of production, which render the physical properties
of materials, vary from point to point (random, piecewise continu-
ous or continuous functions of coordinates). Furthermore, certain
parts of structural elements have to operate under radiation and
elevated temperatures and which cause non-homogeneity in the
material, i.e., the constants of the material become functions of
space variables. When non-homogeneous materials deform, they
retain their shapes up to the point of rupture. Hence, in the compu-
tations of structural members made of such materials, the funda-
mental relations and governing equations of deformable body
mechanics are applicable [1–3]. Up till now, several studies have
been devoted to the vibration behavior of composite orthotropic
structures with variable material properties and reported in refer-
ences [4–13], to mention a few. In these references various model
such as linear, quadratic and exponential for the Young moduli and
density of the plate and shell materials have been considered.
Above mentioned studies are based on the small deflection theory.

Extensive use has been made of conical shells in various practi-
cal applications particularly in aerospace, marine and structural
engineering. The vibratory characteristics of conical shells such
as aircraft structures and turbo machinery blades are critical for
the performance and safety of these structures. Therefore, numer-
ous studies dealing with linear free vibration analysis of homoge-
neous isotropic [14–20] and orthotropic [21–23] truncated
conical shells using thin-shell theory appear in the open literature.
In some applications, the vibration response of composite shells
calculated by linear theory is inaccurate. Thus, when the vibration
amplitude becomes comparable to the shell thickness, a nonlinear
theory should be used. There are some important studies on the
vibration analysis of perfect and imperfect homogeneous compos-
ite shells in the large deformation [24–38]. A complete survey on
this subject can be found in Refs. [39–43]. As the geometrical
non-linearity is taken into account in the motion equations of
non-homogenous shells, unpredictable behaviors may be occur. A
review of the literature shows that few studies have been carried
out to investigate the vibration of non-homogeneous composite
shells in the large deflection [44,45].

Because of the combined effects of orthotropy and non-homo-
geneity, it is extremely difficult to obtain solutions for non-linear
vibration problems of non-homogenous materials with anisotropic
properties. From the literature survey, one can see that the non-lin-
ear vibration problem of non-homogeneous orthotropic truncated
conical shell have not been investigated previously. Therefore, it
is very important to develop an accurate, reliable analysis towards
the understanding of the non-linear vibration characteristics of the
non-homogenous composite structures. In this paper, the
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large-amplitude vibration behaviors of non-homogeneous ortho-
tropic conical shells are investigated by using Donnell shell theory
and the non-linear strain–displacement relations of the finite
deflection. The frequency–amplitude relationship for the non-
homogeneous orthotropic truncated conical shell is obtained using
the Superposition principle, Galerkin and semi-inverse methods.
Numerical results show various effects of the non-homogeneity,
orthotropy, non-homogeneous compositional profiles and conical
shell characteristics on the dimensionless non-linear frequency
parameter or frequency–amplitude characteristics.

2. Governing equations

A truncated conical shell with thickness, h, and semi-vertex an-
gle, c, is made of the non-homogeneous orthotropic material. The
curvilinear coordinate system is defined as (Shz), where S and h
coincides with generator and circumferential directions, respec-
tively, and z is perpendicular to S � h plane and its direction is in-
wards normal of the conical shell, as shown in Fig. 1. Here R1 and R2

indicate the radii of the cone at its small and large ends, respec-
tively. S1 and S2 are the distances from the vertex to the small
and large bases, respectively. The axes of orthotropy are parallel
to the curvilinear coordinates S and h. W be the stress function
for the stress resultants defined by
NS ¼ W;h1h1=S2 þW;S=S;Nh ¼ W;SS;NS ¼ �W;Sh1=SþW;h1=S2, where
h1 = hsinc and a comma denotes partial differentiation with respect
to the corresponding coordinates.

The non-homogeneity of the material of the conical shell is as-
sumed to arise due to the variation of Young’s moduli, shear mod-
ulus and density along the thickness direction z as [1,9,11]
½E1ðZÞ; E2ðZÞ;GðZÞ� ¼ �u1ðZÞ½E01; E02;G0�; qðZÞ ¼ �u2ðZÞq0; Z ¼ z=h,
where E01 and E02 are the Young’s moduli in S and h directions,
respectively, G0 is the shear modulus and q0 is density of the
homogeneous orthotropic materials. Additionally,
�uiðZÞ ¼ 1þ luiðZÞ; ði ¼ 1;2Þ, where ui(Z), (i = 1,2) are the contin-
uous functions of the non-homogeneity defining the variation of
the Young’s moduli, shear modulus (i = 1) and density (i = 2), satis-
fying the conditions jui(Z)j 6 1(i = 1, 2), and l is a non-homogene-
ity coefficient, satisfying 0 6 l 6 1.

In this study, the non-homogeneity function of the orthotropic
material of the truncated conical shell is assumed to be exponen-
tial function which, ui(Z) = e�0.1jZjcos (vZ), (i = 1, 2), where v is the
non-homogeneity parameter [9].

By using large deflection shell theory, the non-linear motion
and strain compatibility equations of non-homogeneous truncated
conical shells are given as follows [40,45]:
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where w is the displacement and MS, Mh, MSh represent moment
resultants and the mass density per unit length defined as

q1 ¼
Z 0:5

�0:5
qðZÞdZ ð3Þ

The force and moment resultants are expressed by [39,41]:

½ðNS;Nh;NShÞ; ðMS;Mh;MShÞ� ¼
Z h=2

�h=2
ðrS;rh;rShÞ½1; z�dz ð4Þ

The stress–displacement relations for non-homogeneous ortho-
tropic truncated conical shells are given as follows:
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where eS, eh, eSh are the strains on the reference surface and the
quantities Qij, (i, j = 1, 2, 6) are

Q11 ¼
E01u1ðZÞ

1� m12m21
; Q22 ¼

E02u1ðZÞ
1� m12m21

; Q 12 ¼ Q 21 ¼ m21Q 11

¼ m12Q 22; Q 66 ¼ 2G0u1ðZÞ ð6Þ

in which m12 and m21 are the Poisson’s ratios, assumed to be constant
and satisfying m21E01 = m12E02 [42].

Based on the above relationships, the non-linear motion and
compatibility Eqs. (6) and (7) may be written in the form as:
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