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a b s t r a c t

In this paper, a method to compute explicit solutions for laminated plate with arbitrary stacking
sequences is presented. This technique is based on the construction of an a posteriori Reduced-Order
Model using the so-called Proper Generalized Decomposition. The displacement field is approximated
as a sum of separated functions of the in-plane coordinates x; y, the transverse coordinate z and the ori-
entation of each ply hi. This choice yields to an iterative process that consists of solving a 2D and some 1D
problems successively at each iteration. In the thickness direction, a fourth-order expansion in each layer
is considered. For the in-plane description, classical Finite Element method is used. The functions of hi are
discretized with linear interpolations. Mechanical tests with different numbers of layers are performed to
show the accuracy of the method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Composite and sandwich structures are widely used in the
industrial field due to their excellent mechanical properties, espe-
cially their high specific stiffness and strength. In this context,
they can be subjected to severe mechanical loads. For laminated
composite design, accurate knowledge of displacements and
stresses is required. Moreover, the choice of the stacking se-
quences has an important influence on the behavior of the struc-
tures. The classical way consists in performing different
computations with a fixed value of each orientation of the plies.
The present approach based on the Proper Generalized Decompo-
sition (PGD) aims at building the explicit solutions with respect to
any stacking sequences avoiding the computational cost of
numerous computations.

According to published research, various theories in mechanics
for the modeling of composite structures have been developed. On
the one hand, the Equivalent Single Layer approach (ESL) in which
the number of unknowns is independent of the number of layers, is
used. But, the transverse shear and normal stresses continuity on
the interfaces between layers are often violated. We can distin-
guish the classical laminate theory [1] (unsuitable for composites
and moderately thick plates), the first order shear deformation
theory [2], and higher order theories with displacement [3–10]
and mixed [11,12] approaches. On the other hand, the Layerwise

approach (LW) aims at overcoming the restriction of the ESL con-
cerning the discontinuity of out-of-plane stresses on the interface
layers and taking into account the specificity of layered structure.
But, the number of degrees of freedom (dofs) depends on the num-
ber of layers. We can mention the folllowing contributions [13–17]
within a displacement based approach and [18,11,19] within a
mixed formulation. As an alternative, refined models have been
developed in order to improve the accuracy of ESL models avoiding
the additional computational cost of LW approach. So, a family of
models, denoted zig-zag models, was derived in [20–22] from
the studies described in [23,24]. Note also the refined approach
based on the Sinus model [25–27]. This above literature deals with
only some aspects of the broad research activity about models for
layered structures and corresponding finite element formulations.
An extensive assessment of different approaches has been made in
[28–32].

Over the past years, the so-called Proper Generalized Decompo-
sition (PGD) [33] has shown interesting features in the reduction
model framework. A separated representation of variables called
radial approximation was also introduced in the context of the LA-
TIN method [34] for reducing computational costs and used to
solve parametric problems [35]. For the scope of our study, the
PGD has been successfully applied for the modeling of composite
beams and plates [36–38]. The principle of the method consists
in using separated representation of the unknown fields to build
an approximate solution of the partial differential equations. A first
attempt to obtain analytical solutions for composite plate based on
a Navier-type solution with a separation of variables can also be
found in [39].
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This work aims at modeling composite plate structures regard-
less of the stacking sequences. For this purpose, the present
approach is based on the separation representation where the dis-
placements are written under the form of a sum of products of (i)
bidimensional polynomials of (x, y), (ii) unidimensional polynomi-
als of z and (iii) unidimensional polynomials of the orientations of
the plies hi. As in [38], a piecewise fourth-order Lagrange polyno-
mial of z is chosen as it is particularly suitable to model composite
structures. As far as the variation with respect to the in-plane coor-
dinates is concerned, a 2D eight-node quadrilateral Finite Element
(FE) is employed. The functions of the orientations of each ply are
piecewise linear. Finally, the deduced non-linear problem implies
the resolution of NC þ 2 linear problems alternatively (NC is the
number of layers). This process yields to a 2D and 1D problems
in which the number of unknowns is smaller than in a Layerwise
approach. Finally, the solution depends explicitly on the fibers ori-
entation of each ply.

We now outline the remainder of this article. First, the reference
mechanical formulation is recalled. Then, the resolution of the
parametrized problem by the PGD is described. The particular
assumption on the displacements yields a non-linear problem
which is solved by an iterative process. Then, the FE approxima-
tions are described. Finally, numerical tests are performed. A
one-layer case is first considered to assess and illustrate the
behavior of the method. The influence of the discretization of the
functions depending on the orientation of the plies is shown.
Two-layer and four-layer configurations are also addressed. The
accuracy of the results is evaluated by comparison with reference
solutions issued from PGD solutions with different fixed stacking
sequences using the work developed in [38].

2. Reference problem description

2.1. The governing equations

Let us consider a plate occupying the domain V ¼ X�Xz

bounded by @X with Xz ¼ � h
2 ;

h
2

� �
in a Cartesian coordinate system

ðx; y; zÞ. The plate is defined by an arbitrary region X, in the ðx; yÞ
plane, located at the midplane z ¼ 0, and by a constant thickness
h. See Fig. 1.

2.1.1. Constitutive relation
The plate can be made of NC perfectly bonded orthotropic layers

of the same material. Using matrix notation, the three dimensional
constitutive law in the material coordinate is given by:

rm ¼ eCem ð1Þ

where the stress vector rm, the strain vector em and eC are written in
the material coordinate. eC is defined as:

eC ¼
eC11

eC12
eC13 0 0 0eC22
eC23 0 0 0eC33 0 0 0eC44 0 0

sym eC55 0eC66

26666666664

37777777775
ð2Þ

The stiffness coefficients eCij are not reported for brevity reason
(see [40] for more details). For each layer ðkÞ, a rotation matrix RðkÞ

is defined to obtain the constitutive law in the global coordinate
system. So, we have:

rðkÞ11

rðkÞ22

rðkÞ33

rðkÞ23

rðkÞ13

rðkÞ12

266666666664

377777777775
¼

CðkÞ11 CðkÞ12 CðkÞ13 0 0 CðkÞ16

CðkÞ22 CðkÞ23 0 0 CðkÞ26

CðkÞ33 0 0 CðkÞ36

CðkÞ44 CðkÞ45 0

sym CðkÞ55 0

CðkÞ66

266666666664

377777777775

eðkÞ11

eðkÞ22

eðkÞ33

cðkÞ23

cðkÞ13

cðkÞ12

266666666664

377777777775
i:e: rðkÞ ¼ CðkÞeðkÞ ð3Þ

with CðkÞ ¼ RðkÞeCRðkÞ
T

and

RðkÞ ¼

cos2 hk sin2 hk 0 0 0 �2sinhk coshk

sin2 hk cos2 hk 0 0 0 2sinhk coshk

0 0 1 0 0 0
0 0 0 coshk sinhk 0
0 0 0 �sinhk coshk 0

sinhk coshk �sinhk coshk 0 0 0 cos2 hk� sin2 hk

26666666664

37777777775
ð4Þ

We denote the stress vector rðkÞ, the strain vector eðkÞ, the fibers
orientation hk (Fig. 1) and CðkÞij the three-dimensional stiffness coef-
ficients of the layer ðkÞ in the global coordinate system.

2.1.2. The classical weak form of the boundary value problem
The plate is submitted to a surface force density t defined over a

subset CN of the boundary and a body force density b defined in X.
We assume that a prescribed displacement u ¼ ud is imposed on
CD ¼ @X� CN .

The classical formulation of the elastic problem is recalled: find
a displacement field u and a stress field r defined in V which
verify:

� the kinematic constraints:

u 2 U ð5Þ

� the equilibrium equations:

r 2 S and 8u� 2 U�

�
Z
V
r : eðu�ÞdV þ

Z
V

b:u� dV þ
Z

CN

t:u�dC ¼ 0
ð6Þ

� the constitutive relation:

r ¼ CeðuÞ ð7Þ

U ¼ fu ju 2 ðH1ðVÞÞ3; u ¼ ud on CDg is the space in which the
displacement field is being sought, S ¼ L2½V�3 the space of the
stresses, and eðuÞ denotes the linearized strain associated with
the displacement.

3. Application of the Proper Generalized Decomposition to plate
with any stacking sequences

The Proper Generalized Decomposition (PGD) was introduced in
[33] and is based on an a priori construction of separated variablesFig. 1. Geometry of the plate and orientation of the fibers of the laminated plate.
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