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a b s t r a c t

The subject of this paper is the plate composed of two identical isotropic outer layers and a more com-
pliant inner interlayer, perfectly connected to one another at the interface (three-layered plate). This
paper presents a model that describes the behavior of this plate by a system of exact analytical (explicit)
equations.

An analytical model is preferred over finite element models and simplified formulas if it is fast and
easy-to-use. Thus, modeling has been developed within the framework of two-dimensional elasticity,
instead of three. In so doing, the model also represents a means for attaining full comprehension of
the involved phenomena, something that neither three-dimensional elasticity nor finite element models
and simplified formulas can attain. The two-dimensional behavior is governed here by using assumptions
that do not impose constraints on the behavior. Starting from these assumptions, the paper illustrates the
relationships between displacements and interface stresses. The subsequent sections of the paper
describe the model and present some real case applications.

The contribution of this paper is to consider both the shear modulus and the elastic modulus of the
interlayer. Thus, this model applies to three-layered plates with any interlayer, whether utterly compli-
ant or relatively stiff. Conversely, the previous exact analytical models assumed zero elastic modulus, and
hence they applied to utterly compliant interlayers only. Hence, not only does the new model predict the
exact behavior of plates that the former analytical models described only approximately, but this model
may also be used as a benchmark for finite element models, which cannot assign zero value to the elas-
ticity modulus of the interlayer together with the actual shear modulus.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with the analytical modeling of the plate made
up of two identical (stiff) outer layers and a more compliant inner
interlayer, perfectly bonded to one another at the interface. This
structure is called three-layered plate.

The state-of-the-art review on modeling of layered structures
[1–4] showed that the vast majority of research findings were re-
lated to finite element analysis [5–26] and simplified formulas
based on the monolithic plate having equivalent bending proper-
ties to the layered plate [27–35]. On the contrary, research findings
on analytical modeling were of the minority; moreover, they were
mainly related to the interface [36–39] and the layered beam [40–
48], while only few research findings were related to the layered
plate [49–55].

However, analytical modeling is absolutely necessary and can-
not be replaced by finite element method or simplified formulas.
In fact, high values of the layer-to-interlayer elastic moduli and/
or thicknesses ratios impinge on the results of finite element mod-
els and simplified formulas. Therefore, these methods call for a

benchmark, which can be provided only by analytical modeling.
In particular, finite element analysis results (or simplified formu-
las) have to be checked against exact results and the models (or
the formulas) have to be calibrated to obtain the best agreement
with exact solutions.

Analytical modeling of three-layered structures can be devel-
oped within the framework of either three-dimensional or two-
dimensional elasticity. However, three-dimensional analytical
models [46,54] are cumbersome to use. Therefore, not only can
these models not be considered as viable alternatives to finite ele-
ment models or simplified formulas, but also these models cannot
be used as benchmarks for the other modeling approaches.

Considering this, a specific research program on the three-lay-
ered plate was started, within the framework of two-dimensional
elasticity and analytical modeling. This research program obtained
a model for the laminated glass plate [51] and a model for the
sandwich plate [52]. Both the models assumed that each layer be-
haved according to the Kirchhoff–Love plate hypotheses and that
the interlayer had nil elastic modulus (i.e., only the interlayer shear
stiffness was considered). Additionally, [51] assumed that the
interlayer was thin in comparison to the layers, which simplified
the shear stress calculation.
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These assumptions allowed for the obtainment of simple ana-
lytical formulations, whose application was not only easy, but even
less time consuming than to generate a finite element mesh or to
apply an empirical formula. Moreover, the assumptions repro-
duced directly the process of deformation of the layered plate,
while they disregarded the mechanical behaviors that the plate
was not explicitly designed to have, in order to capture the defin-
ing attributes of the layered plate. Thus, these models also pro-
vided an understanding of the phenomena involved and also
represent tools for design.

Since these models were derived under the assumption of nil
interlayer elastic modulus, these models provided the exact solu-
tion only for three-layered plates with utterly compliant interlay-
ers. If the stiffness of the interlayer was non-negligible, these
models did not provide the exact solution, however the solution
they provided was closely approximated. Moreover, these models
did not lend themselves to be used as benchmark for finite element
models, since the assumption of nil interlayer elastic modulus
could not be directly reproduced by using the finite element meth-
ods. In fact, the material properties of the elastic finite elements
that model the interlayer have to satisfy the elasticity laws and
to avoid numerical singularities.

Non-nil elastic modulus implies normal stress, r, in the inter-
layer. These normal stresses r provide the plate with extra stiffness
and extra load-carrying capacity. The extra stiffness and the extra
load-carrying capacity due to the in-plane r stresses (rx, ry) are
marginal, since the fibers are close to the middle plane (neutral
axis). Conversely, the extra stiffness and the extra load-carrying
capacity due to the out-of-plane r stress (r in the direction trans-
verse to the plate, rz) may be significant. The greater the elastic
modulus and/or thickness of the interlayer, the greater these con-
tributions. But above all, the extra-stiffness and the extra load-car-
rying capacity are noticeable even for a low elastic modulus of the
interlayer. Thus, results from finite element models can be com-
pared to results from the analytical models [51,52] only if the
interlayer is either very thin or described by utterly orthotropic fi-
nite elements.

This research aimed at achieving an easy-to-use analytical mod-
el like the former models [51,52], but that could also be used to

check and calibrate the finite element models in a simple and
straightforward manner. Thus, modeling has considered the actual
value of the elastic modulus in the direction transverse to the plate.
In so doing, the new model can be applied to three-layered plates
with interlayer elastic modulus that is non-negligible, while the
former models assumed that the interlayer elastic modulus was
nil. This model uses various mathematical developments obtained
for the model of the sandwich plate with discontinuous connection
[56], which are referred to here.

2. System definition and modeling assumptions

The considered reference structure is the three-layered plate
with cross-section formed by two isotropic layers, each one of
thickness h, plus an interlayer of thickness 2k, restrained at the
boundary, and subjected to a lateral load p (Fig. 1). Global positions
are identified by a Cartesian coordinate system with origin O on
the middle plane of the plate, the x and y axes in the plane of the
plate, and the z-axis out of the plane of the plate (Figs. 1 and 2).
Local positions within the upper layer are identified by the same
in-plane x and y axes, but with the out-of-plane z’ axis with
origin O’ on the middle plane of the upper layer (and O’’ and z’’
for the lower layer).

The behavior of the reference structure is anti-symmetric with
respect to its middle plane.

The nomenclature adopted in this paper is the same as that
adopted in [52]. In particular, ut and vt denote the x and y compo-
nents of the in-plane displacement of the upper interface with re-
spect to the middle plane of the three-layered plate. Since anti-
symmetric condition implies that the middle plane is immovable,
ut and vt are absolute displacements. Moreover, tu and tv denote
the x and y components of the in-plane shear stresses transferred
between the interlayer and the layers through the interfaces. The
positive directions of the vectors are defined in [52] and are shown
in all the figures.

The modeling process within the two-dimensional elasticity
framework calls for the following assumptions [51,52], which are
about (1) the plate, (2) the interfaces, (3) the layers, (4) and the
interlayer.

Nomenclature

B side parallel to the y-axis (0 � y � B)
E elastic modulus of the layers
Et in-plane elastic modulus of the interlayer
Etz out-of-plane elastic modulus of the interlayer
G (elastic) shear modulus of the layers
Gt (elastic) shear modulus of the interlayer
h thickness of each layer
L side parallel to x-axis, with L P B (0 6 x 6 L)
M; N arguments of the trigonometric series (m�p/L; n�p/B),

where m and n are odd integer positive numbers
p lateral surface load (load per square unit of surface)
tu; tv x and y components of the in-plane shear stress trans-

ferred through the upper interface, between the inter-
layer and the upper layer

u; v; w components of displacements in the x, y, z directions,
respectively

ut; vt x and y components of the relative in-plane displace-
ment of the upper interface with respect to the to the
plate middle surface (which is immovable)

tvm; vtm maximum value of tv and vt

wMax maximum deflection of the plate

z; z0; z0 0 out-of-plane axes, with origin O, O0, O0 0 on the middle
plane of the interlayer, upper layer, and lower layer,
respectively

b constitutive parameter whose value is either 1
(if bt � bcr ) or 0 (if bt < bcr)

bcr critical value of bt (if bt < bcr, the interlayer is utterly
compliant, and vice versa)

bt interlayer stiffness that governs the distortion, defined
as Etz=k

k half the thickness of the interlayer
m Poisson’s ratio of the layers
ex; ey in-plane strains in the layers and interlayer
rx; ry in-plane normal stresses in the layers and interlayer
ryi ry stresses at the upper surface of the lower layer
rym ry stresses at the lower surface of the lower layer
rMax maximum stress value in the layered plate
rz normal stress in the direction transverse to the plate
hab angle of rotation of the segment ab
f ¼ hþ 2 � k lever arm of the internal couple of the in-plane

forces
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