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a b s t r a c t

We present a fast, analytical method to calculate the threshold and noise parameters from a threshold
scan. This is usually done by fitting a response function to the data which is computationally very
intensive. The runtime can be minimized by a hardware implementation, e.g. using an FPGA, which in
turn requires to minimize the mathematical complexity of the algorithm in order to fit into the available
resources on the FPGA. The systematic errors of the method are analyzed and reasonable choices of the
parameters for use in practice are given.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

When characterizing detector readout electronics it is a com-
mon task to determine its threshold and noise. This is typically
done by performing a so-called threshold scan where, e.g. in case
of a silicon detector, a known charge is injected and the probability
for the detector to respond is recorded as a function of the injected
charge. The resulting response function (1) is a convolution of the
pure threshold (step function) and a Gaussian noise function. The
traditional method to obtain the threshold and noise is to fit Eq.
(1) to the data. The disadvantage of this approach is that it usually
involves solving a nonlinear minimization problem with the
following steps required in the least squares approach:

� finding a suitable choice of starting values, range and step sizes
to vary the free parameters,

� calculating the response function, in this case it involves
calculating the non-trivial error function,

� determination and minimization of the residuals by varying the
free parameters.

When a hardware implementation, e.g. a Field Programmable Gate
Array (FPGA), is desired, the calculation of complex mathematical
functions and decisions such as the optimized values for the
parameters is usually avoided. In FPGAs, elementary logical and
mathematical operations such as additions and shifting are much

more efficient. In order to execute more complex mathematical
operations, modern FPGAs often have special circuitry, e.g. effi-
cient multiplication [2]. However, such resources are limited.

In the following, we present an alternative method for fast
extraction of the relevant parameters from the data of a threshold
scan. Our strategy is to simplify the problem mentioned above,
such that the optimization problem can be replaced by a direct
analytical calculation.

2. Fast feature extraction

Fig. 1 shows a data sample which was recorded during a threshold
scan of an ATLAS FE-I3 [3] type frontend module. The charge qi to be
injected was chosen by setting a Digital-Analog-Converter (DAC) to
values from 270 to 350 where the amount of charge is a linear
function of the DAC-value. Each charge qi was injected 100 times and
the number RðqiÞ of hits detected by the frontend module was
recorded. The response function shows the typical S-like shape.

It can be seen that the total number of recorded responses in a
threshold scan is equivalent to the integral over the response function
within the probed range. Since this number is very easy to obtain (i.e.
count) when carrying out a threshold scan, it is a suitable value for an
analytic determination of the threshold from the data. The noise can
be determined analytically with a similar approach. In the following,
the required equations for these calculations are derived.

2.1. Derivation

Fig. 2 illustrates the chosen nomenclature and integration
ranges. Labeling the integrals over a limited range of the response
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function (1) as ~M and ~mμ, we get
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From the symmetry of R(q) it follows:

~M ¼ ðqmax�μÞ � A ð4Þ
In principle one must assert that qmax�μ¼ μ�qmin. However, in
practice this constraint can be omitted because for sufficiently
small qmin, i.e. an injected charge sufficiently far below the
threshold μ, no detector response will be recorded. Thus, these
points do not contribute to the value of the integral which means
that any deviation from the symmetry in that region will have no
influence on the result. The very same argument can be made for
the points far above the threshold, where the detector will always
respond. From Eq. (4) we obtain the following formula to calculate
the threshold:
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of the error function (see e.g. Eq. (8.100d) in [4]) we getZ μ
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Due to the symmetry of R it also follows thatZ 1
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Using Eqs. (7) and (8) in Eq. (3), ~mμ can be written as

~mμ ¼ lim
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For sufficiently small qmin and sufficiently large qmax we can omit
the limits in Eq. (9). Solving for s, we obtain
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The justification of sufficiently large integration ranges can be
made similarly to the considerations for Eq. (4). Writing down the
relative deviation ζ caused by omitting the limit in Eq. (9), we
obtain
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In order to simplify the notation, the integration ranges are
written as k multiples of s. Note that ζ is a function of only k.
Fig. 3 shows that the relative deviation already for a range of 6 � s
around the threshold is smaller than 4�10�10, which is negligible
compared to the maximum precision of 9 decimal digits for
operations on a 32 bit single precision floating point number.

We now replace the integrals (2) and (3) with their respective
sums according to the Riemann's interpretation of integrals (see e.
g. [5]):

lim
m-1

∑
m�1

i ¼ 0
f ðτiÞ � ðtiþ1�tiÞ ¼

Z b

a
f ðtÞ dt; with t0 ¼ a; tm ¼ b ð12Þ

When using n¼m equidistant measurements with a distance
tiþ1�ti ¼ d and choosing qi ¼ τi ¼ ðtiþ1þtiÞ=2, Eq. (12) can be
written as

d � lim
m-1

∑
m�1

i ¼ 0
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Z b

a
f ðtÞ dt; with d¼ b�a

m
ð13Þ

This choice of qi results in each measurement location being
centered between the limits of its respective interval. As f ðtÞ is
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Fig. 1. Number of measured responses of the ATLAS FE-I3 frontend module for 100
injections at each value of the input charge qi with a step size d¼4 [A.U.]. The two
curves that are virtually indistinguishable are plotted over the data and show the
response functions as obtained by a fit to the data (μ¼ 307:870:8, s¼ 8:2570:68)
and by the method presented in this paper (μ¼ 307:84, s¼ 8:172).
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Fig. 2. Error function with integration limits qmin and qmax, threshold μ and
A injections with symmetry point (μ, A=2). Figure from Ref. [1].
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Fig. 3. Relative deviation between the values of the integral ~mμ over the response
function when integrating from �1 to 1 compared to using the finite limits
7k � s. Figure from Ref. [1].
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