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a b s t r a c t

The method of symplectic series discretized by finite element is introduced for the stress analysis of
structures having cracks at the interface of dissimilar materials. The crack is modeled by the conventional
finite elements dividing into two regions: near and far fields. The unknowns in the far field are as usual. In
the near field, a Hamiltonian system is established for applying the method of separable variables and the
solutions are expanded in exact symplectic eigenfunctions. By performing a transformation from the
large amount of finite element unknowns to a small set of coefficients of the symplectic expansion,
the stress intensity factors, the displacements and stresses in the singular region are obtained simulta-
neously without any post-processing. The numerical results are obtained for various cracks lying at
the bi-material interface, and are found to be in good agreement with the reference solutions for the
interface crack problems. Some practical examples are also given.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-material composites and structures are being used to en-
hance the overall performance to take advantage of the positive
attributes of the individual constituents and to minimize their
weaknesses. However, premature failure due to the existence of
delamination is one of the most common failure modes in compos-
ite materials and bonded joints. Therefore, the analysis of interface
cracks is very important in safety investigation. Stress intensity
factors (SIFs) at the tips of any interfacial cracks or flaws can be
used as controlling parameters. Various numerical methods for
evaluating the stress intensity factors of bi-material interface
cracks have been developed.

Numerical approaches such as boundary element method
(BEM) and the element free Galerkin method (EFGM) are widely
used in the solution of the interface crack problems. Pan and Ama-
dei [1] presented a boundary element formulation for the analysis
of linear elastic fracture mechanics problems involving anisotropic
bi-materials. Green’s functions are also derived to avoid discretiza-
tion along the interface except for the interfacial crack part and a
special crack-tip element is introduced to capture exactly the
crack-tip behavior. Matsumto et al. [2] developed a method for
evaluating the SIFs of interface cracks between dissimilar materials
based on the interaction energy release rates and the BEM
sensitivity analysis. Hadjesfandiari and Dargush [3] developed a
boundary element formulation to determine the complex SIFs

associated with cracks on the interface between dissimilar materi-
als. The oscillating stress singularity is addressed through the
introduction of complex weighting functions for both displace-
ments and tractions by non-standard numerical quadrature formu-
las. Pant et al. [4] evaluated the complex SIFs for bi-material
interface cracks using EFGM. The material discontinuity at the
interface has been modeled using a jump function with a jump
parameter that governs its strength. Russo and Zuccarello [5] em-
ployed BEM to obtain the G-SIFs in the zone where the interface
intersects the free edge surfaces of bonded metal-composite co-
cured joints in the numerical analysis.

Many different software packages based on FEM (finite element
method) techniques have been developed. The finite element
method is widely used in engineering design. Nagai et al. [6,7] pro-
posed a numerical method for evaluating SIFs of interface cracks
between dissimilar anisotropic materials subjected to thermal
and mechanical loads. Using the M-integral with the moving
least-square method, SIFs can be automatically calculated with
only the nodal displacements from the FEM. Serier et al. [8] ex-
tended the finite element method to the analysis of the behavior
of an interface crack in bi-material specimen with a central hole.
Noda et al. [9–11] calculated the SIFs for edge and central interface
cracks in a bi-material bonded strip subjected to various loads by
FEM. Ouinas et al. [12] introduced the FEM to study the perfor-
mance of the bonded composite reinforcement for reducing the
stress concentration at a semicircular lateral notch and for repair-
ing cracks emanating from this kind of notch. Caner and Bažant
[13] used zero-thickness interface elements to model fractures at
the skin–foam interface, in both the fiber composite skins and
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the foam. Chow and Atluri [14] developed a ‘mutual integral’ ap-
proach combined with FEM to calculate the mixed-mode SIFs for
a free-edge delamination crack in a laminate subject to tensile
loading. The extended finite element method (X-FEM) for fracture
mechanics was first proposed by Belytschko in 1999. Nagashima
et al. [15] applied X-FEM to stress analyses of structures containing
interface cracks between dissimilar materials. The interface crack
can be modeled by locally changing interpolation function in the
element near a crack. Belytschko and Gracie [16] presented a
method for modeling dislocations in systems with arbitrary mate-
rials interfaces based on X-FEM where dislocations are modeled in
the sense of Volterra. Besides the above works, the fractal geome-
try concept was introduced into finite element method. Leung et al.
[17–19] developed a fractal finite element method (FFEM) to calcu-
late the mixed mode stress intensity factor and the thermal effect
for two-dimensional isotropic thermal crack problems. The com-
plete eigenfunction expansion of displacement by Williams is em-
ployed for the global interpolation function. The fractal-like finite
element method has been proved to be very efficient and accurate
in two-dimensional static and dynamic crack problems.

In the present study, a finite element discretized symplectic
method is developed for calculating the mixed mode stress inten-
sity factors of interface cracks in multi-materials composites. The
overall cracked body is divided into a finite size singular stress re-
gion near the crack tip and a regular region away from the crack
tip, i.e. near field and far field. Both of the two regions are modeled
by conventional FEM. In the near field, the symplectic method is
employed to derive the analytical solution of the displacements
and stresses. The symplectic method for solid mechanics and elas-
ticity was first developed by Zhong and his associates [20–22].
Much research work was done on the fracture analysis [23–25].
We make use of the analytical solutions from the symplectic series
and perform a displacement transformation to reduce the large
number unknown nodal displacements to a small set of coeffi-
cients. The size of matrices involved is drastically reduced. We
begin by establishing the general formulation of FEDSM for bi-
material structures with interface cracks. Then, the symplectic
method is introduced to obtain the expressions of the displace-
ment and stress functions. Mode I and II stress intensity factors
are directly obtained by some specific terms of the series. Finally,
numerical comparisons to the classical solutions in literature are
presented to validate the efficiency and accuracy. New results are
also presented.

2. Finite element discretized symplectic method

In this section, the methodology of finite element discretized
symplectic method (FEDSM) will be introduced. Denote the two
dissimilar isotropic materials as M1 and M2. The overall interface
crack is divided into near and far fields as shown in Fig. 1. The
curve that separates the two fields is denoted by C0. The whole
structure is modeled by the conventional finite element method
(FEM). The near field analytical symplectic series solutions are ob-
tained first by symplectic method and the displacement unknowns
at the nodes of the near field are then transformed to the unknown
coefficients of the series while the unknowns of the far field are
unaltered. It should be noted that it is not required to develop
any special singular elements in the present method. Any order
and any shape of finite elements can be used in the FEDSM.

In a crack problem using FEM, the static equilibrium equation is

Ku ¼ f ð1Þ

where K ¼ KFF KFN

KNF KNN

� �
;u ¼ uF

uN

� �
and f ¼ fF

fN

� �
are the stiffness

matrix, displacement vector and force vector respectively. The sub-
scripts F and N represent the far and near fields. The grid refinement

technique is usually used in the conventional FEM, so that high or-
der stiffness matrix is possible. In the near field, analytical symplec-
tic functions U(r, h) in polar coordinates are first obtained by the
method of separable variables in a Hamiltonian approach in the
next section. In the near field, a symplectic transformation is em-
ployed to reduce the large number of unknown displacements uN

in Eq. (1) to a small number of unknown coefficients of symplectic
eigenfunctions c so that uN(r, h) = U(r, h)c, where c is the vector of
unknown coefficients which is independent of the coordinates.
Equivalently, at node j, the nodal displacements are evaluated at
uN(rj, hj) = U(rj, hj)c. Eq. (1) reduces to

K�u ¼ �f ð2Þ

where K ¼ KFF KFNU
UTKNF UTKNNU

� �
, �u ¼ uF

c

� �
;�f ¼ fF

UTfN

� �
. The un-

knowns now are the vector of displacements in the far field uF

and the vector of the handful coefficients c instead of the large order
vector uN in the singular near field. An additional advantage is that
the SIFs are given explicitly in c and, therefore, no post-processing is
required. Hence, the computational time can be reduced signifi-
cantly. In addition, for multiple interface cracks, the whole domain
can be divided into several sub-domains which include only one
crack at a time based on the substructure method.

3. Hamiltonian system in the near field

In the near field, analytical solutions are found by the symplec-
tic method. The interface crack located on the common edge
(h = 0�) in the polar coordinate (r, h) where the r-axis is along the
radial direction with the origin located at the crack tip. Let E1, t1

and E2, t2 be the Young moduli and the Poisson ratio for M1 and
M2 respectively. Denote or = o/or, oh = o/oh, the potential energy
density is

Uiðui
r ; ui

hÞ ¼ Ei½ð@rui
rÞ

2 þ 2ti@rui
rðui

r þ @hui
hÞ=r

þ ðui
r þ @hui

hÞ
2
=r2�=½2ð1� ðtiÞ2Þ�

þ Ei½@rui
h � ðui

h � @hui
hÞ=r�2=½4ð1þ tiÞ� ð3Þ

where rkl are the components of stresses, the superscript i denotes
material element 1 or 2 for the displacements ui

r and ui
h. Denote

g = ln r to eliminate the variable coefficient r in Eq. (3) and let the
over-dot represent differentiation with respect to g, namely
(�) = o g(). In the absence of external body force, the Lagrange
function in polar coordinates is Liðui

r;u
i
hÞ ¼ r2Uiðui

r; ui
hÞ. According

to references [23], the full state vector is

Fig. 1. Near field and far field in a cracked structure.
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