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a b s t r a c t

In this paper, the Carrera Unified Formulation and the generalized differential quadrature technique are
combined for predicting the static deformations and the free vibration behavior of thin and thick isotro-
pic as well as cross-ply laminated plates. Through numerical experiments, the capability and efficiency of
this technique, based on the strong formulation of the problem equations, are demonstrated. The numer-
ical accuracy and convergence are also examined. It is worth noting that all the presented numerical
examples are compared with both literature and numerical solutions obtained with a finite element code.
The proposed methodology appears to be able to deal not only with uniform boundary conditions, such as
fully clamped or completely simply-supported, but also with mixed external conditions, that can be
clamped, supported or free.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper the Unified Formulation (UF) proposed by Carrera
et al. [1–5] is used to derive the equations of motion and boundary
conditions and to analyze isotropic and cross-ply laminated plates
by the generalized differential quadrature (GDQ) method. A higher
order theory (HSDT) as proposed before by Kant et al. [6,7] consid-
ering non-zero normal deformation ez is adopted, and an expanded
higher-order shear deformation up to the cubic expansion in z for
all in-plane displacement components is worked out.

The combination of the UF and collocation with the GDQ meth-
od provides an easy, highly accurate framework for the solution to
plates, under any kind of shear deformation theory, irrespective of
the geometry, loads or boundary conditions. In this sense, this
methodology can be considered a generalized UF.

Many shear deformation theories, that involve a constant
transverse displacement across the thickness direction and make
the transverse normal strain and stress negligible, were proposed.
This assumption is adequate for thin-plates or plates for
which the thickness-to-side h=a is smaller than 0.1. For higher
h=a ratios, the use of shear deformation theories including the
contribution of the transverse normal strain and stress is funda-

mental. Among such theories, the pioneering higher-order plate
theory by Lo et al. [8,9] or the ones by Kant and colleagues
[6,7] can be cited. Recently, the works by Batra and Vidoli [10]
and Carrera [1,2,11] show interesting ways of computing trans-
verse and normal stresses in laminated composite or sandwich
plates. Higher-order theories in the thickness direction were also
addressed by Librescu et al. [12], Reddy [13] and more recently
by Fiedler and colleagues [14], who considered polynomial
expansions in the thickness direction. None of such approaches
carried out the analysis by the GDQ method. Some other HSDTs
have been presented over the years regarding composite materi-
als, FGMs as well as beams, plates and shells [15–19], however it
is impossible to cite them all. The use of alternative methods,
such as meshless methods based on generalized differential
quadrature, is attractive due to the absence of a mesh and the
use of strong-form methods. The present work adds some numer-
ical applications and results to the vast bibliography concerning
meshless methods [20–45].

In this paper, it is investigated for the first time how the UF
by Carrera can be combined with the GDQ method for treating
thick isotropic and cross-ply laminated plates, using a refined
higher-order shear and normal deformation theory. The quality
of the present method in predicting static deformations, and free
vibrations of thick isotropic and cross-ply laminated plates is
compared and discussed with other methods in some numerical
examples.
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2. Fundamental equations via Unified Formulation

Many details of the Unified Formulation (UF) by Carrera can be
inspected in [1–4,11]. In the present section the equations of mo-
tion and the corresponding boundary conditions are worked out
by using the fundamental nuclei [1–4,11] and a compact matrix
form notation.

2.1. Displacement field

By defining a displacement field, that involves all layers, an
equivalent single-layer theory is proposed. The displacement field
is expressed as

U ¼ u0 þ zu1 þ z3u2

V ¼ v0 þ zv1 þ z3v2

W ¼ w0 þ zw1 þ z2w2

ð1Þ

The kinematic hypothesis (1) can be generally written, using the
UF, as

U ¼ F0uð0Þ þ F1uð1Þ þ F2uð2Þ

V ¼ F0v ð0Þ þ F1v ð1Þ þ F2v ð2Þ

W ¼ F0wð0Þ þ F1wð1Þ þ F2wð2Þ
ð2Þ

where Fs, for s = 0, 1, 2, are the thickness functions. In particular, for
the in-plane displacements ðF0; F1; F2Þ ¼ ð1; z; z3Þ and for the out-of-
plane displacement ðF0; F1; F2Þ ¼ ð1; z; z2Þ. In conclusion, the dis-
placement field (2) can be written in compact matrix form using
the following recursive formula

U ¼
X2

s¼0

FsuðsÞ ð3Þ

where U ¼ ½Uðx; y; z; tÞ Vðx; y; z; tÞ Wðx; y; z; tÞ �T is the three
dimensional displacement vector and
uðsÞ ¼ ½uðsÞðx; y; tÞ v ðsÞðx; y; tÞ wðsÞðx; y; tÞ �T is the sth order gener-
alized displacement component vector of the middle surface points
ðz ¼ 0Þ. Fs is a 3� 3 matrix, that is

Fs ¼
Fs 0 0
0 Fs 0
0 0 Fs

2
64

3
75 ð4Þ

This corresponds to a refined, higher-order shear deformation the-
ory, as initially proposed by Kant [6]. For a laminate with n ortho-
tropic layers, the lower and upper layer surfaces are defined by zk

and zkþ1, respectively, as illustrated in Fig. 1 for a 3-layered lami-
nate. Since a laminated plate is taken into account, it should be also
mentioned that the total plate thickness h is given by the following
sum

h ¼
Xl

k¼1

hk ð5Þ

where hk ¼ zkþ1 � zk is the generic thickness of the kth lamina and l
is the total number of layers.

2.2. Deformation components

The generalized strain component vector of the sth order fol-
lowing the UF approach can be written as

eðsÞ ¼ DXuðsÞ; for s ¼ 0;1;2 ð6Þ

where eðsÞ ¼ ½ eðsÞx eðsÞy cðsÞx cðsÞy cðsÞxz cðsÞyz xðsÞxz xðsÞyz eðsÞz �
T

and
DX is the kinematic partial differential operator

DX ¼

@
@x 0 0 @

@y 0 0 1 0 0

0 @
@y

@
@x 0 0 0 0 1 0

0 0 0 0 @
@x

@
@y 0 0 1

2
664

3
775

T

ð7Þ

2.3. Stress components

The constituent material of the given plate layers is linearly
elastic, thus, the constitutive equations in terms of stresses are de-
fined lamina per lamina. The stress components are given by the
Hooke law [13]

rðkÞ ¼ CðkÞeðkÞ ð8Þ

where the stress component vector means
rðkÞ ¼ ½rðkÞx rðkÞy sðkÞxy sðkÞxz sðkÞyz rðkÞz �

T
, the strain component vec-

tor is indicated as eðkÞ ¼ ½ eðkÞx eðkÞy cðkÞxy cðkÞxz cðkÞyz eðkÞz �
T

and CðkÞ is
the constitutive matrix for the kth lamina. For the sake of complete-
ness the matrix at hand is reported below

CðkÞ ¼

CðkÞ11 CðkÞ12 CðkÞ16 0 0 CðkÞ13

CðkÞ12 CðkÞ22 CðkÞ26 0 0 CðkÞ23

CðkÞ16 CðkÞ26 CðkÞ66 0 0 CðkÞ36

0 0 0 CðkÞ44 CðkÞ45 0

0 0 0 CðkÞ45 CðkÞ55 0

CðkÞ13 CðkÞ23 CðkÞ36 0 0 CðkÞ33

2
66666666664

3
77777777775

ð9Þ

In Eq. (9) CðkÞnm, for n;m ¼ 1;2; . . . ;6, represent the material constants
in the Cartesian reference system, after the equations of transfor-
mation [13] are applied. By integrating the stress components
through the thickness of the plate, the stress resultants are obtained

SðsÞ ¼
X2

s¼0

AðssÞeðsÞ; for s ¼ 0;1;2 ð10Þ

where SðsÞ ¼ ½NðsÞx NðsÞy NðsÞxy NðsÞyx T ðsÞx T ðsÞy PðsÞx PðsÞy SðsÞz �
T

and AðssÞ are the stiffness constants [39] that can be evaluated as

AðssÞ
nm ¼

Xl

k¼1

Z zkþ1

zk

CðkÞnmFsFsdz

Að~ssÞ
nm ¼

Xl

k¼1

Z zkþ1

zk

CðkÞnmFs
@Fs

@z
dz for s; s ¼ 0;1;2

Aðs~sÞ
nm ¼

Xl

k¼1

Z zkþ1

zk

CðkÞnm
@Fs

@z
Fsdz for n;m ¼ 1;2; . . . ;6

Að~s~sÞ
nm ¼

Xl

k¼1

Z zkþ1

zk

CðkÞnm
@Fs

@z
@Fs

@z
dz

ð11Þ

In Eq. (11) the indices s; s are related to the chosen thickness func-
tions Fs; Fs. When these indices are indicated as ~s;~s, it means that
the corresponding thickness functions are derived with respect to
z, that is @Fs=@z; @Fs=@z. The subscripts n, m of Eq. (11) follow the
relationships shown in Eq. (11) itself.Fig. 1. A 3-layer laminate.
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