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a b s t r a c t

Laminated curved glasses as widely used elements in buildings urge to develop a mathematical model for
their analysis and safer design. Large deflection theory is necessary in order to predict the true behavior
of a laminated curved glass beam consisting of several glass layers bonded by soft interlayer PVB (Poly-
Vinyl Butyral). In the present study, a mathematical model is developed for the analysis of a laminated
circular arch or a laminated uniformly curved glass beam which is the special case of the laminated
curved glass beams. Thus, three nonlinear, coupled partial differential equations governing the true
behavior are derived in polar coordinates by applying variational and energy principles. Results of this
model are compared with the results from the experiments and finite element model, and all of them
are presented in figures to explain the true behavior.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated glass units are widely used as architectural compo-
nents of buildings. The units consist of two or more glass layers
which are connected by an elastomeric polymer layer. They have
some advantages such as filtering the solar radiation and eliminat-
ing the unwanted temperature effects. Among its most important
advantages is related to safety or safety requirements set for the
modern buildings to protect people from dangers due to broken
glasses since the interlayer (PVB) between glass layers holds the
fragments of glass together.

It has been quite a long time since laminated glasses are in use.
First of all laminated glasses with flat shapes were used as their
production was easy, and design parameters were available. Now-
adays, the use of curved laminated glasses in modern buildings is
increasing since it is possible to mold them into various bending
shapes as byproducts.

Curved laminated glass beams have not been employed much in
practice due to lack of information on their structural behavior. In
general a curved beam differs from a straight beam due to its initial
curvature. Most of the studies are about the linear rather than the

nonlinear behavior of curved beams because of the mathematical
complexity of the latter. In addition, laminated glasses easily un-
dergo large deflections in transverse direction when subjected to
lateral loads since thicknesses of glass layers used are very small
compared to other dimensions. Therefore, it is necessary to devel-
op a mathematical model based on large deflection theory to pre-
dict the strength and behavior of curved beams.

2. Previous research

The first study about laminated glass beams was conducted by
Hooper [1]. He derived a mathematical model for the bending of
laminated glass beams under four-point loading. The relevant dif-
ferential equation in terms of applied bending moment and the ax-
ial force in one of the plies were solved by using Laplace transform.
Hooper plotted three influence factors K1, K2 and K3: proportional
to the axial force in one of the plies, shear strain in the interlayer
and central deflection, respectively. He noted that shear modulus
of PVB can be written as a function of time approaching zero as
it increases, since PVB is a viscoelastic material. Hooper carried
out experiments on laminated glass beams under short (<3 min)
and long (80 days) loading durations.

Behr et al. [2] conducted a series of experiments on layered,
monolithic and laminated glass units, to verify the theoretical
model for a laterally loaded, thin plates developed by Vallabhan
[3]. They observed that stresses in layered glass units compared
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to monolithic glass plates were larger near the corner and smaller
near the center. It was also observed that at room temperature and
below, maximum principal stresses near the corner of a laminated
unit were slightly smaller than the theoretically predicted stresses
at the same location in a monolithic glass plate. It can be said that
at room temperature laminated glass unit behaved like a mono-
lithic glass plate, whereas at higher temperatures it behaved like
a layered glass unit. Therefore, the behavior of laminated glass unit
was bounded by these two limiting cases.

Behr et al. [4] conducted experiments to consider the structural
behavior of laminated glass under lateral pressure. Theoretical and
experimental research was undertaken to investigate load–deflec-
tion behavior of monolithic, layered and laminated glass units
under lateral pressure. Similarities between laminated and mono-
lithic glass structural behavior were observed at room temperature
and below, but the behavior of laminated glass changed towards
layered glass behavior at elevated temperatures.

Edel [5] conducted three point bending experiments to investi-
gate the temperature transition of laminated glass. Edel compared
the results of his experiments with the results of the finite element
model he developed. According to the results of the experiments
the behavior of laminated glass approached to that of the mono-
lithic model at temperatures much below the transition tempera-
ture of the PVB based interlayer, and approached to that of the
layered model at temperatures in excess of the transition
temperature.

Dawe [6] used finite element model to solve a circular arch with
radius R and thickness t. The strain energy of the system was writ-
ten in terms of tangential and normal components of displace-
ments. To obtain the differential equations which govern the
behavior of the arch, the first variation of the energy was used.
By solving the governing differential equations, tangential and nor-
mal displacements were obtained. As a result Dawe improved the
independently interpolated model by increasing the order of as-
sumed displacement from cubic to quintic.

Rajasekaran and Padmanabhan [7] derived the governing equa-
tions for curved beams by employing large displacement theory.
They used three dimensional small strain large displacement rela-
tions in cylindrical coordinates by ignoring the nonlinear terms
associated with the displacement in z direction (w), since it was
much smaller compared to the displacements in x and y directions.
They derived the equilibrium equations and boundary conditions

by using the principle of virtual displacements through by sum-
ming up the virtual work done by internal forces as the integral
of the product of Kirchhoff stress tensor and virtual Green’s strain
tensor and the virtual work done by external forces.

Kang and Yoo [8] presented a consistent formulation for thin
walled curved beams. They derived equilibrium equations predict-
ing linear, large displacement and buckling behavior using the
principle of minimum potential energy. To obtain the governing
differential equations total potential energy of the system was
written as the summation of strain energy and force potential.
They neglected the nonlinear terms and considered the linear
behavior of a curved beam. The governing coupled differential
equations of the displacements and the boundary conditions for
the curved beam were obtained by first variation of total potential
energy. In their derivation the curvature effect was included. Ana-
lytical solution to the coupled equations was not easy: in order to
solve the equations an approximation based on the binomial series
was adopted by ignoring the higher order terms.

Lin and Heish [9] developed a closed form analytical solution for
in plane laminated curved beam with variable curvatures. Prior to
their study there were only a few papers devoted to laminated
composite materials. Most of the studies were about the isotropic
beam. To analyze curved beams numerically and analytically
approximate methods were applied to the displacement field by
the previous research. Lin and Heish [9] obtained the set of equa-
tions which were the general solutions of axial force, shear force,
moment and rotation angle and displacement field for laminated
curved beam in terms of the angle of tangential slope. They defined
the arc length as a function of tangential slope.

Nonlinear behavior of the curved laminated glass beams are
complex and requires iterative solution. The convergence problems
even in the nonlinear solution of the curved beams are faced and
investigated by several researchers [6,8–11].

Vallabhan et al. [12] developed a nonlinear model for two plates
placed without an interlayer (i.e. layered glass plates) to determine
the stresses and the limits of the behavior for the laminated glass
units.

In 1993 Vallabhan et al. [13] improved their mathematical mod-
el developed for the layered glass plates given in Vallabhan et al.
[12] to introduce a new mathematical model for the nonlinear
stress analysis of the laminated glass plates by using the principle
of minimum potential energy and variational calculus. Nonlinear

Nomenclature

A coefficient matrix
A1, A2 cross sectional areas of top and bottom glass plies
b width of beam
E modulus of elasticity of glass
G shear modulus of interlayer
h thickness of single glass ply
h1, h2 thickness of top and bottom glass plies
r1, r2 radius of top and bottom glass plies
rI radius of interlayer
I1, I2 moment of inertia of top and bottom glass arches
N1, N2 cross sectional forces at the top and bottom glass plies
num number of discrete points along the beam
P point load applied at middle of the beam
q uniformly distributed load applied over the length of

beam
R right hand side vector
s arc length measured on the centroidal axis
t thickness of the interlayer
Ui

m membrane strain energy for the top and bottom plies

Ui
b bending strain energy for the top and bottom plies

UI shear strain energy for the interlayer
u1, u2 displacements for the top and bottom plies in the h

direction
V1 volume of top glass ply
V2 volume of bottom glass ply
VI volume of interlayer
X potential energy of applied loads
w lateral displacement vector
wmax maximum displacement in the plate
wo(i) lateral displacement calculated in the previous step
h, r polar coordinates
ei

m axial strain energy for the top and bottom plies
ei

b bending strain energy for the top and bottom plies
cI shear strain in the interlayer
a under-relaxation parameter for convergence
P total potential energy of the system
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