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a b s t r a c t

The microstructure of unidirectional fiber-reinforced ceramic matrix composites is described by a cylin-
drical unit cell that is then discretized by a set of friction elements. Equilibrium equations resulting from
the displacement increment balance between the fiber and matrix are constructed and solved, and the
distributions of stress and displacement are obtained. Interfacial debonding, fiber fracture and matrix
cracking are considered to simulate the hysteresis loops. Finally, the method developed in this paper is
employed to study the interfacial sliding and hysteresis loops of a SiC/CAS composite subjected to arbi-
trary cyclic load. The results are discussed and compared with experimental data.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The application of ceramic materials with superior thermal
properties, chemical stabilities and wear resistances is restricted
due to their internal brittleness. The incorporation of a continuous
fiber reinforcement phase into a brittle ceramic matrix improves
its strength and toughness. Therefore, continuous fiber-reinforced
ceramic matrix composites (CMCs) have become one of the most
promising materials for space-related applications.

During their actual use, these materials are usually subjected to
random or arbitrary cyclic loads and are prone to fatigue fracture.
Due to the combined effects of microstructural damages such as
matrix cracking, interfacial friction and wear of fiber, ceramic ma-
trix composites (CMCs) exhibit a notable hysteresis phenomenon
before fatigue fracture. The hysteresis loops of CMCs reveal the de-
tails of microstructural damages; therefore, the loops are critical
for understanding the mechanism of fatigue failure.

Many researchers have attempted to describe this hysteresis
phenomenon with mathematical and mechanical models. In the
study by Cho et al. [1], the sliding of the fiber/matrix interface is
treated as the primary factor that causes hysteresis the fatigue pro-
cess. The authors first introduced the concepts of completely and
partially debonded interfaces and obtained the hysteresis energy
dissipation rates of the two situations. Pryce and Smith [2] simu-
lated the hysteresis loops for a partially debonded interface by
assuming a constant interface shear stress within the debonded

zone. Ahn and Curtin [3] used a statistical method to simulate
the progression of matrix cracking and study the effect of matrix
crack on the hysteresis loops. Solti et al. [4] extended the model
of Pryce and Smith [2] to the case of the chemically bonded fi-
ber/matrix interface. The debonding length of frictional sliding
along the fiber/matrix interface was determined by the maximum
shear stress criterion. Based on the fiber pull-out model of Hutch-
inson–Jensen [5], the chemically bonded fiber/matrix interface was
also considered by Vagaggin, Domergue and Evans [6,7]. They used
the model to simulate the hysteresis loops, and their results indi-
cated that interfacial debonding energy has a significant effect on
the interfacial debonding and sliding of CMCs subjected to fatigue
loading. In recent years, Li, Longbiao and Song, Yingdong used the
shear-lag method to estimate both the effect of fiber failure on the
fatigue hysteresis loops of CMCs [8] and the interfacial frictional
coefficient of CMCs from hysteresis loops [9].

However, all the models mentioned above can be used only for
a regular tension–tension cyclic load but not for an arbitrary load.
The main factor limiting those models to regular tension–tension
cyclic loads is the assumption about the location and range of
interface slip zones. As mentioned by Cho et al. [1], the hysteresis
response of CMCs is mainly caused by interfacial friction. In fact,
interfacial friction is a strong non-linear phenomenon that is diffi-
cult to model. Thus, all the works [1–9] mentioned above needed a
series of assumptions about the locations and ranges of slip zones
to reduce the difficulty of the mathematical analysis of the hyster-
esis loop model. These assumptions include the following: (1) The
cyclic loading process is composed of initial loading and repeatable
unloading and reloading processes; (2) during initial loading, the
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fiber slips out from the matrix. A forward slip zone forms near the
crack plane and expands along the interface; (3) during unloading,
the pull-out fiber slips back into the matrix. A reverse slip zone
forms near the crack plane and expands along the interface. Mean-
while, part of the forward slip zone is covered by the reverse slip
zone during the process of complete unloading; (4) during the sub-
sequent reloading, a new forward slip zone initiates near the crack
plane and expands to cover the previous reverse slip zone. When
reloading to the maximum value, the reverse slip zone has been
entirely covered by the expanding forward slip zone caused by
reloading, and a new forward slip zone occurs that is the same as
the one caused by initial loading and (5) the residual cycles repeat
processes 3 and 4. These assumptions may be appropriate in the
case of regular tension–tension load; however, they are not correct
in the case of arbitrary load, in which unloading may occur before
loading to the maximum value, and the load spectrum may contain
compressive load.

To develop a hysteresis model of CMCs under arbitrary load, an
interfacial friction model based on fundamental friction laws is
established in this paper. This model is quite different from the
shear-lag model used in previous work [1–9]. The assumptions
about the locations and ranges of interface slip zones are replaced
by more general assumptions about friction. The microstructure of
unidirectional fiber-reinforced ceramic matrix composites is de-
scribed by a cylindrical unit cell that is then discretized by a set
of frictional elements. The ‘‘equilibrium status’’ and ‘‘incremental
status’’ are proposed to depict the interfacial friction. Furthermore,
the effects of interfacial debonding, fiber fracture, matrix cracking
and crack closure are considered within the model.

2. Stress analysis

2.1. Unit cell model

Assuming the fibers embedded in the matrix were uniform, the
microstructure of unidirectional fiber-reinforced CMCs can be de-
scribed using the unit cell model illustrated in Fig. 1. For the cell
shown, L is its length, equal to the average crack spacing; rf is
the fiber radius and rm is the radius of the matrix; vf and d repre-
sent the volume fractions of the fiber and debonding length,
respectively. When r is applied at the end near the crack plane,
s(x) represents the variation of shear stress along the interface.

2.2. Interfacial friction model

For the differential volume elements shown in Fig. 1, the
equilibrium equation of forces can be written as

drf

dx
¼ 2

rf
sðxÞdrm

dx
¼ 2v f

rf ð1� v f Þ
sðxÞ ð1Þ

In the bonded zone, the displacements of both fiber and matrix
are equivalent, that is,

uf ðxÞ ¼ umðxÞ ð2Þ

In the debonded zone, if no interfacial sliding occurred, the
increments of the displacements of both fiber and matrix are
equivalent, that is,

duf ðxÞ ¼ dumðxÞ ð3Þ

If interfacial sliding occurred in the debonded zone, however,
interface shear stress is equal to the maximum friction shear
stress:

sðxÞ ¼ si ð4Þ

The basic equations of the shear-lag model are equivalent
with Eqs. (1)–(4). To resolve the equations in the shear-lag model,
the characteristics and distributions of slip zones must be pre-
sumed according to the loading state. To avoid this assumption,
the system is regarded as being in equilibrium at every moment
during the assumed quasi-static loading procedure in the present
study. The state in which the increments of displacements of
both fiber and matrix are equivalent along the interface is called
the ‘‘equilibrium status’’. As applied load is incrementally in-
creased, the distribution of stress along the interface varies,
and sliding occurs in the region where Eq. (4) is satisfied. The
increment of displacement in the region without sliding is gov-
erned by Eq. (3), where a new ‘‘equilibrium status’’ is satisfied.
The transition state between the two ‘‘equilibrium statuses’’ is
called the ‘‘incremental status’’.

To resolve the mechanical quantities of the equilibrium and
incremental statuses, the fiber and matrix are each discretized into
n cylindrical elements along the fiber axial direction (as shown in
Fig. 1).

The relationships between the element interface shear force fi

and interface shear stress sx,i; the normal force of fiber element
Ff,i and normal stress of fiber rf,i; and the normal force of
matrix element Fm,i and normal stress of matrix rm,i, can be
written as

fi ¼ 2p � rf � l � sx;i

Ff ;i ¼ p � r2
f � rf ;i

Fm;i ¼ p � ðr2
m � r2

f Þ � rm;i

ð5Þ

where l is the length of the element.
At the equilibrium status, the equilibrium of forces acting on

the fiber and matrix elements is satisfied, that is

Ff ;i ¼ fi þ Ff ;iþ1

Fm;i ¼ �fi þ Fm;iþ1
ð6Þ

At the incremental status, an increment DF is added to the ap-
plied force F; the end and interface shear forces of both fiber and
matrix elements will vary with this increment. The increments fol-
low these equilibrium relationships:

DFf ;i ¼ Dfi þ DFf ;iþ1

DFm;i ¼ �Dfi þ DFm;iþ1
ð7Þ

Assuming the increments of the displacements of both fiber and
matrix are equivalent at the incremental status, the following rela-
tionship is yielded, using Eq. (3):

Duf ;i ¼ Dum;ii ¼ 1;2; . . . ;n ð8Þ

where
Fig. 1. Unit cell model and discretized unit cell model for unidirectional fiber-
reinforced CMCs.

X. Gao et al. / Composites: Part B 56 (2014) 92–99 93



Download English Version:

https://daneshyari.com/en/article/817910

Download Persian Version:

https://daneshyari.com/article/817910

Daneshyari.com

https://daneshyari.com/en/article/817910
https://daneshyari.com/article/817910
https://daneshyari.com

