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a b s t r a c t

The optimization of the sinusoidal higher order shear deformation theory (HSDT) for the bending analysis
of functionally graded shells is presented in this paper for the first time. The HSDT includes the stretching
effect and their shear strain shape functions (sin(mz) and cos(nz)) contain the parameters ‘‘m’’ and ‘‘n’’
that need to be selected by providing displacements and stresses which produce close results to 3D elas-
ticity solutions. The governing equations and boundary conditions are derived by employing the principle
of virtual work. A Navier-type closed-form solution is obtained for functionally graded plates and shells
subjected to transverse load for simply supported boundary conditions. Numerical results of the opti-
mized sinusoidal HSDT are compared with the FSDT, other quasy-3D hybrid type HSDTs, reference solu-
tions, and 3D solutions. The key conclusions that emerge from the present numerical results suggest that:
(a) the optimization procedure is beneficial in terms of accuracy; and (b) it is possible to gain accuracy
keeping the unknown’s constant by performing the optimization procedure shown in this paper.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Classical composite shells are extensively used in the industry
but they always require the designer’s effort to tailor different lam-
inate’s properties to suit a particular application. Some classical
composite structures suffer from discontinuity of material proper-
ties at the interface of the layers and constituents. Therefore, the
stress fields in these regions create interface problems. Further-
more, large plastic deformation of the interface may trigger the ini-
tiation and propagation of cracks in the material [1]. In order to
alleviate this problem, functionally graded materials (FGM), which
are classified as novel composite materials, were proposed by Bev-
er and Duwez [2], and then developed and successfully used in
industrial applications since 1984 [3].

Functionally graded structures made possible to graduate the
material properties through the thickness and avoid abrupt
changes in the stress and displacement distributions. Currently
FGMs are alternative materials widely used in aerospace, nuclear
reactor, energy sources, biomechanical, optical, civil, automotive,
electronic, chemical, mechanical, and shipbuilding industries.
FGMs are important due to outstanding properties of being able
to resistant high temperature gradients, strong mechanical
performance and reduce the possibility of catastrophic fracture.
Therefore, FGMs performs very well in high temperature environ-
ment applications such as heat exchanger tubes, thermoelectric

generators, furnace linings, electrically insulated metal ceramic
joints. Recently, the application of FGMs can be seen in micro
and nanodevices (it should be keep in mind that with nanotechnol-
ogy one may be able to create new materials and devices with po-
tential applications in medicine, electronics, biomaterials and
energy production). Then, FGMs is a topic that needs considerable
attention.

In general, FGMs are both macroscopically and microscopically
heterogeneous advanced composites which are made for example
from a mixture of ceramics and metals with continuous composi-
tion gradation from pure ceramic on one surface to full metal on
the other. In fact, FGMs are materials with spatial variation of
the material properties. However, in most of the applications avail-
able in the literature, as in the present work, the variation is
through the thickness only. Therefore, it evidences the early state
of development of functionally graded materials.

Recently, several researchers have provided results on function-
ally graded plates (FGPs) and shells. Both analytical and numerical
solutions can be found in the literature. An interesting literature
review also may be found in the paper of Birman and Byrd [4],
see also Mantari and Guedes Soares [5–9]. An updated literature
review of functionally graded materials can be found in the work
by Jha et al. [10]. Therefore, for completeness, in the present article,
only the relevant and related work on functionally graded shells
performed during the last two years is described.

Carrera et al. [11] studied the static analysis of FG plates and
shells. The stretching effect was included in the mathematical
formulation and the importance of the transverse normal strain
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effects in the mechanical prediction of stresses of FG plates and
shells was remarked. Recently, Neves et al. [12,13] and Ferreira
et al. [14] presented a quasi-3D hybrid type (polynomial and
trigonometric) shear deformation theory for the static and free
vibration analysis of FGPs by using meshless numerical method.
Their formulation can be seen as a generalization of the original
Carreras’s Unified Formulation (CUF), by introducing different
non-polynomial displacement fields for in-plane displacements,
and polynomial displacement field for the out-of-plane displace-
ment. Mantari and Guedes Soares [5–9] presented bending results
of FGM by using news non-polynomial HSDTs. In [7,8], the
stretching effect was included and improved results of displace-
ment and in plane normal stresses compared with [5,6] were
found.

The well-known Carrera’s Unified formulation was recently ex-
tended to include non-polynomial shear strain shape function in
their formulation [12–14], and the need of new non-polynomial
shear strain shape function, which can be adapted to this advanced
generalized formulation for perhaps better performance, is
demanding. In the present work, the optimization of the well-
known sinusoidal shear deformation theory is presented for the
first time. Therefore, a new, attractive, and very accurate shear
strain shape function which potentially can be used in other
numerical methods and analytical higher order shear deformation
formulations is given.

In the present paper, the six-unknown well-known sinusoidal
HSDT formulated for shells is optimized for the bending analysis
of FGPs. The theory complies with the tangential stress-free
boundary conditions on the plate boundary surface, and thus a
shear correction factor is not required. The plate governing equa-
tions and their boundary conditions are derived by employing
the principle of virtual work. A Navier-type analytical solution is
obtained for shells subjected to transverse load for simply sup-
ported boundary conditions. Benchmark results for the displace-
ment and stresses of functionally graded rectangular plates are
obtained. The results of present optimized HSDTs are compared
with 3D exact, quasy-exact, and with other closed-form solutions
published in the literature. Finally, a new, simple, attractive and
very accurate optimized sinusoidal shear deformation theory is
presented for the first time.

2. Theoretical formulation

The rectangular doubly-curved shell made of FGM of uniform
thickness, h, is shown in Fig. 1. The n1 and n2 curves are lines of cur-
vature on the shell mid-surface, n3 = f = 0, while n3 = f is a straight
line normal to the mid-surface. The principal radii of normal curva-
ture of the reference (middle) surface are denoted by R1 and R2. The
displacement field satisfying the conditions of transverse shear
stresses (and hence strains) vanishing at a point (n1,n2,±h/2) on
the outer (top) and inner (bottom) surfaces of the shell, is given
as follows:

�u ¼ 1þ f
R1

� �
uþ f y�h1 þ q�

@h3

a1@x
� @w

a1@x

� �
þm sinðf=mÞh1;

�v ¼ 1þ f
R2

� �
v þ f y�h2 þ q�

@h3

a2@y
� @w

a2@y

� �
þm sinðf=mÞh2;

�w ¼ wþ cosðf=nÞh3;

ð1a-cÞ

where u(n1,n2), v(n1,n2), w(n1,n2), h1(n1,n2), h2(n1,n2) and h3(n1,n2)
are the six unknown displacement functions of the middle surface
of the panel, whilst y� ¼ � cos h

2m

� �
and q� ¼ � cos h

2n

� �
(being h the

thickness of the shell), a1 and a2 are scalar values inherent to the
type of shells. These scalar values are associated to the vectors tan-
gent to the n1 and n2 coordinate lines, respectively, for more details
readers may consult the interesting book written by Reddy [15].

As can be noticed in Eq. 1(a-c), the displacement field includes
the parameters m and n into the shear strain shape functions.
These parameters are selected in Section 4 with the idea to obtain
close to 3D results.

In the derivation of the necessary equations, small elastic defor-
mations are assumed, i.e. displacements and rotations are small,
and obey Hooke’s law. The starting point of the present thick shell
theory is the 3D elasticity theory [15], expressed in general curvi-
linear (reference) surface-parallel coordinates; while the thickness
coordinate is normal to the reference (middle) surface as given in
Fig. 1. The strain–displacement relations, based on this formula-
tion, are written as follows:

e1 ¼
1
A1

@�u
@n1
þ 1

a2

@a1

@n2
�v þ a1

R1
�w

� �
;

e2 ¼
1
A2

@�v
@n2
þ 1

a1

@a2

@n1
�uþ a2

R2
�w

� �
;

e3 ¼
@ �w
@n3

;

e4 ¼
1
A2

@ �w
@n2
þ A2

@

@n3

�v
A2

� �
;

e5 ¼
1
A1

@ �w
@n1
þ A1

@

@n3

�u
A1

� �
;

e6 ¼
A2

A1

@

@n1

�v
A2

� �
þ A1

A2

@

@n2

�u
A1

� �
;

ð2a-fÞ

where

A1 ¼ 1þ n3

R1

� �
a1; A2 ¼ 1þ n3

R2

� �
a2: ð3a-bÞ

and ni(i = 1, . . . , 6) represent strain components; �u; �v and �w are the
displacements on the surface (n1,n2,n3) and a1 and a2 the vectors
tangent to the n1 and n2 coordinate lines.

Introduction of Eqs. (1a-c) into the relations given in Eqs. (2a-f)
of a moderately shallow and deep shell supplies the following
strain–displacement relations, valid for a doubly-curved panel un-
der consideration:

exx ¼ e0
xx þ fe1

xx þm sinðf=mÞe2
xx;

eyy ¼ e0
yy þ fe1

yy þm sinðf=mÞe2
yy;

ezz ¼ �
1
n

sinðf=nÞe5
zz;

eyz ¼ e0
yz þ cosðf=nÞe3

yz þ cosðf=mÞe4
yz;

exz ¼ e0
xz þ cosðf=nÞe3

xz þ cosðf=mÞe4
xz;

exy ¼ e0
xy þ fe1

xy þm sinðf=mÞe2
xy:

ð4a-fÞ
FGP

R

midle plate

θ22ξ

2
R1

ξ

θ

ζ

3

3
11θ ξ

Fig. 1. Geometry of a functionally graded plate.
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