
Symmetry in a problem of transverse shear of unidirectional composites

V.A. Fedorov ⇑
Department ‘‘Dynamics and strength of machines’’, National Technical University ‘‘Kharkiv Polytechnic Institute’’, Frunze 21, Kharkiv 61002, Ukraine

a r t i c l e i n f o

Article history:
Received 24 May 2013
Received in revised form 23 July 2013
Accepted 12 August 2013
Available online 22 August 2013

Keywords:
A. Fibres
B. Elasticity
C. Analytical modelling
C. Micro-mechanics
Symmetry

a b s t r a c t

Unidirectional fibre-reinforced composites with symmetrical structure, loaded by transverse shear, are
investigated. The focus of the paper is on mathematical models for different representative cells. Trans-
verse shear of symmetrical composites, unlike other types of loads, does not allow application of Curie’s
principle for detection of possible symmetry of mechanical fields. The existence of such symmetry is
shown by employing the theorem proven earlier by the author. Respective boundary value problems
can be formulated for the minimal representative cell. In contrast to the existing approach, which con-
tains inaccuracy of Saint–Venant’s principle, the proposed formulations are exact. It is shown that
employing the symmetry cell in numerical solutions can reduce computational cost by 2–3 orders. With
the use of Lagrange’s and Castigliano’s variational principles in generalised form, it is proven that solu-
tions for the ‘‘infinite’’ cell give lower and upper bounds for the transverse shear modulus. It is proven,
as well, that these bounds lie within the Voigt and Reuss bounds.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

To determine the effective properties of a composite in terms of
its component properties, an infinite composite loaded in a certain
way at infinity is considered. However, respective boundary value
problems (BVPs) are usually solved using finite representative cells
[1–8]. Those cells may differ due to the chosen definition domain of
the BVP and the respective way that boundary conditions are
assigned.

Let us refer to the cell as ‘‘infinite’’ if it occupies a finite region
loaded in the same way as an infinite composite. The size of this
cell has to be much larger than the characteristic length scale of
inhomogeneity. The transfer of the load conditions from infinity
to the ‘‘infinite’’ cell boundaries implies substitution of the actual
shear stress field with the statically equivalent uniform stress field.
Such employment of the Saint–Venant’s principle contributes inac-
curacy to the mathematical model. Enlargement of the cell im-
proves accuracy but also increases computational cost.

For the composite with symmetric structure, the minimal rep-
resentative cell is a periodic cell occupying the domain of the per-
iod of the stress field. Boundary conditions for the cell include
conditions of periodicity and loading.

When the structure of the composite is symmetric, this symme-
try can be used in two ways. First, Neumann’s principle [9] allows
for the detection of symmetry of anisotropy. Second, Curie’s prin-
ciple [10] allows, in some load cases, for the detection of mechan-

ical fields symmetry. According to this principle, the symmetry of
cause (composite structure and its load) entails a similar symmetry
of effect (mechanical fields). In this case, the symmetry cell is a
minimal representative cell. The cell occupies part of the periodic
domain and has boundary conditions of symmetry and loading,
which takes place in cases of uniaxial tension or longitudinal shear
in principal directions when both the structure and the load of the
composite possess planar symmetry.

Difficulties arise when such a composite is loaded with trans-
verse shear. This problem is discussed in [5]. In this case, Curie’s
principle cannot detect possible symmetry of mechanical fields be-
cause one constituent of cause (namely, the structure) has symme-
try planes, and another constituent (the load) is nonsymmetric (we
can say, antisymmetric) with respect to these planes. However, de-
tailed analysis [11] shows that even in such cases, a non-obvious
form of mechanical fields symmetry can be present, and its use
can increase the efficiency of the solution.

2. Description of the problem and main equations

Let us consider an infinite unidirectional composite with doubly
periodic structural symmetry with periods 2a1 and 2a2 along axes
x1 and x2. Symmetry planes of composite structure are parallel to
planes x1 = 0, x2 = 0, x3 = 0 (Fig. 1).

The material of the constituents is isotropic or transversely iso-
tropic with isotropic plane x1x2. The task is to calculate the effec-
tive modulus of transverse shear

eG12 ¼
~s12

~c12
; ð1Þ
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where ~s12 and ~c12 are macrostress and macrostrain of transverse
shear, respectively. Herein, all of the quantities related to macro-
scale are marked with a tilde. To solve the given problem, we need
to specify one of the loading parameters (force loading ~s12 or kine-
matic loading ~c12Þ as the boundary conditions, solve the microme-
chanical problem, define the micromechanical fields in a
composite (displacement vector Uðx1; x2Þ, strain tensor êðx1; x2Þ
and stress tensor r̂ðx1; x2ÞÞ, calculate another loading parameter
(~c12 or ~s12Þ by averaging microstrains c12(x1,x2) or microstresses
s12 (x1,x2), and then use formula (1).

The given composite is orthotropic due to the Neumann’s prin-
ciple. Therefore, in case of transverse shear

~e3 ¼ e3 ¼ ~c31 ¼ c31 ¼ ~c23 ¼ c23 ¼ 0;
~e1 ¼ ~e2 ¼ 0

ð2Þ

the problem can be classified as plane strain of piecewise uniform
elastic body.

Mechanical fields in the composite are described by the gener-
alised Hooke’s law, Cauchy’s equations and differential equations
of equilibrium:

eij ¼ sijklrkl; ði; j; k; l ¼ 1;2;3Þ;
eij ¼ ðUi; j þ Uj; iÞ=2; ði; j ¼ 1;2Þ;
rij; j ¼ 0; ði; j ¼ 1;2Þ:

ð3Þ

Boundary conditions for the force loading are given at infinity
by the uniformly distributed load

s12ðx1 ! �1; x2Þ ! ~s12;

r1ðx1 ! �1; x2Þ ! 0;
s12ðx1; x2 ! �1Þ ! ~s12;

r2ðx1; x2 ! �1Þ ! 0

ð4Þ

with complementary equations

U1ðx1 ¼ 0; x2 ¼ 0Þ ¼ 0;
U2ðx1 ¼ 0; x2 ¼ 0Þ ¼ 0;
U2ðx1 ¼ a1; x2 ¼ 0Þ ¼ 0;

ð5Þ

which eliminate arbitrary deformation-free movement of the
composite.

Kinematic loading at infinity is given by uniform shear strain:

U1ðx1 ! �1; x2Þ ! ~c12x2;

U2ðx1 ! �1; x2Þ ! 0;
U1ðx1; x2 ! �1Þ ! ~c12x2;

U2ðx1; x2 ! �1Þ ! 0:

ð6Þ

Given that elasticity parameters are discontinuous functions of
coordinates, we are searching for the generalised solution of the
BVP formulated above.

3. Existing approaches to the problem

3.1. Periodicity cell

Due to the periodicity of structure and, accordingly, periodicity
of the mechanical fields in the composite, we can formulate the
BVP for the periodicity cell �a1 6 x1 6 a1, �a2 6 x2 6 a2 (Fig. 2),
which is equivalent to the original problem at an infinite domain.

The dimension of the cell in the x3 direction here and below
equals one in the measurement units of choice. Then, the boundary
conditions are conditions of the periodicity of mechanical fields in
view of the shear deformation:

U1ðx1 ¼ �a1; x2Þ ¼ U1ðx1 ¼ a1; x2Þ;
U2ðx1 ¼ �a1; x2Þ ¼ U2ðx1 ¼ a1; x2Þ;
r1ðx1 ¼ �a1; x2Þ ¼ r1ðx1 ¼ a1; x2Þ;
s12ðx1 ¼ �a1; x2Þ ¼ s12ðx1 ¼ a1; x2Þ;
U1ðx1; x2 ¼ �a2Þ ¼ U1ðx1; x2 ¼ a2Þ � 2a2~c12;

U2ðx1; x2 ¼ �a2Þ ¼ U2ðx1; x2 ¼ a2Þ;
r2ðx1; x2 ¼ �a2Þ ¼ r2ðx1; x2 ¼ a2Þ;
s12ðx1; x2 ¼ �a2Þ ¼ s12ðx1; x2 ¼ a2Þ:

ð7Þ

Apart from periodicity, the first and the sixth equations take
into account that transverse shear of the orthotropic material does
not cause linear macrostrains ð~e1 ¼ 0; ~e2 ¼ 0Þ. The fifth equation
sets kinematic loading by macrostrain ~c12. Eq. (5) should be added.

Periodicity conditions, which are redundant to the boundary
conditions

r2ðx1 ¼ �a1; x2Þ ¼ r2ðx1 ¼ a1; x2Þ;
r1ðx1; x2 ¼ �a2Þ ¼ r1ðx1; x2 ¼ a2Þ

can be employed to check the accuracy or error of the numerical
solution of the BVP (3), (7) and (5).

3.2. ‘‘Infinite’’ cell

In practice, an approximate approach is used when an infinite
definition domain of BVP is replaced by an ‘‘infinite’’ cell, consisting
of the periodicity cell surrounded by q layers of periodicity cells
[12]. In Fig. 1, for example, a monolayer ‘‘infinite’’ cell is presented.
In the literature, an ‘‘infinite’’ cell consisting of only one periodicity
cell (q = 0) [5,13], or even only one-quarter of one [4], has been dis-
cussed and employed.

The transfer of force loading conditions from infinity to the
boundaries of the ‘‘infinite’’ cell transforms boundary conditions
(4) into the following form:

s12ðx1 ¼ �l1; x2Þ ¼ ~s12;

r1ðx1 ¼ �l1; x2Þ ¼ 0;
s12ðx1; x2 ¼ �l2Þ ¼ ~s12;

r2ðx1; x2 ¼ �l2Þ ¼ 0;

ð8Þ

Fig. 1. Loading of the composite with macrostress ~s12 or macrostrain ~c12 at infinity.

Fig. 2. Periodicity cell.
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