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In this paper, we investigate the vibration analysis of functionally graded material (FGM) and laminated
composite structures, using a refined 8-node shell element that allows for the effects of transverse shear
deformation and rotary inertia. The properties of FGM vary continuously through the thickness direction
according to the volume fraction of constituents defined by sigmoid function, but in this method, their
Poisson’s ratios of the FGM plates and shells are assumed to be constant. The finite element, based on
a first-order shear deformation theory, is further improved by the combined use of assumed natural

ie}l,:‘:l,)oerr?: strains and different sets of collocation points for interpolation the different strain components. We ana-
A. Laminates lyze the influence of the shell element with the various location and number of enhanced membrane and
B. Vibration shear interpolation. Using the assumed natural strain method with proper interpolation functions the

present shell element generates neither membrane nor shear locking behavior even when full integration
is used in the formulation. The natural frequencies of plates and shells are presented, and the forced
vibration analysis of FGM and laminated composite plates and shells subjected to arbitrary loading is car-
ried out. In order to overcome membrane and shear locking phenomena, the assumed natural strain
method is used. To validate and compare the finite element numerical solutions, the reference solutions
of plates based on the Navier's method, the series solutions of sigmoid FGM (S-FGM) plates are obtained.
Results of the present theory show good agreement with the reference solutions. In addition the effect of
damping is investigated on the forced vibration analysis of FGM plates and shells.

© 2013 Elsevier Ltd. All rights reserved.

C. Finite element analysis

1. Introduction

Whether they are used in civil, marine or aerospace, most struc-
tures are subjected to dynamic loads during their operation. There-
fore, there exists a need for assessing the natural frequency and
transient response of structures. The vibration of thin shells was
discussed in the work of Love [1]. Since then many researchers
have dealt with shell vibration using classical thin-shell theory.
In particular, Donnell [2] used the classical thin shallow-shell the-
ory to understand the free vibration behavior of shells and subse-
quent research has been studied by Leissa [3], Qatu [4] and Liew
[5]. The work on the free vibration analysis of isotropic plates
and shells using a shell element can be founded in Lee and Han
[6]. Ascione et al. [7] and Fraternali et al. [8-10] studied composite
curved beams and shells. Recent work on the vibration analysis
and transient response of plates and shells can be founded in Park
etal. [11], Lee and Han [12] and Han et al. [13].
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The Reissner-Mindlin assumptions have been used in the
improvement of such elements and consequently the mass matrix
includes rotary inertia effects. The accuracy of the results is im-
proved by rotary inertial effect in the mass matrix and transverse
shear effects in the stiffness matrix. However, there are serious de-
fects such as locking phenomena. As commonly accepted, two kinds
of locking phenomena may occur in curved shear flexible bending
element, namely shear locking and membrane locking. While the
shear locking may possibly occur in both flat and curved shear flex-
ible bending element, the membrane locking occurs only in curved
thin shell. Bathe and Dvorkin [ 14] proposed an eight-node shell ele-
ment, named as MITC8, that avoids membrane and shear locking.
The strain tensor was expressed in terms of the covariant compo-
nents and contravariant base vectors. The performance of this ele-
ment was quite satisfactory and suggested the promising results
in very complex shell structures. Bucalem and Bathe [15] have im-
proved in earlier publications the MITC8 shell elements [14] and
concluded that while it performed quite effectively in some cases,
in a few analyses the element presented a very stiff behavior ren-
dering it not useful and improvements are still desirable. Kim and
Park [16] and Kim et al. [17] presented an 8-node shell finite
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element. In 8-node shell element, the persistence of locking prob-
lems was found to continue through numerical experiments on
the standard test problem of MacNeal and Harder [18].

Recently, Han et al. [19] studied the new combination of sam-
pling points for the assumed natural strain and concluded that
while it performed quite effectively in some cases, in a few analy-
ses of very thin-walled structures the element presented less accu-
rate results.

Functionally graded material (FGM) is a special kind of compos-
ites in which the material properties vary smoothly and continu-
ously from one surface to the other. These materials are
microscopically inhomogeneous and are typically made from iso-
tropic components. One of the main advantages of FGM is that it
mitigates severe stress concentrations and singularities at intersec-
tions between interfaces usually presented in laminate composites
due to their abrupt transitions in material compositions and prop-
erties. If a high external pressure is applied to the composite plate
and shell structures, the high stresses occurred in the structure will
affect its integrity, and the structure, as the result, susceptible to
failure. For these reasons, understanding the mechanical behavior
of FGM plates and shells are very important to assess the safety
of the shell and plate structure. Chung and Chi [20] propose a sig-
moid FGM, which is composed of two power-law functions to de-
fine a new volume fraction. Chi and Chung [21] indicate that the
use of a sigmoid FGM can significantly reduce the stress intensity
factors of a cracked body. Recent work on the vibration, buckling
and geometrically non-linear analysis of FGM plates and shells
can be founded in Sofiyev and Schnack [22], Han et al. [23,24], Li
and Wang [25], Bich et al. [26-30] and Dung and Hoa [31].

The aim of this paper is to propose an improvement of the most
useful curved quadrilateral shell finite element, which is clearly,
from a practical point of view, the 8-node element. In order to im-
prove the 8-node ANS shell element, a new combination of sam-
pling points and shaper functions are adopted for the vibration
analysis of FGM and laminated composite structures. To validate
the present shell element models, the numerical examples are
investigated and compared with those solutions from the previous
literatures. The solutions of the free and forced vibration analysis
are numerically illustrated in a number of figures to show the influ-
ence of the types of dynamic loads, the damping effect and the load-
ing time effect in FGM and laminated composite structures.

2. Improvement of shell element

2.1. Kinematics of shell

The geometry of an 8-noded shell element with six degrees of
freedom is shown in Fig. 1.

Fig. 1. Geometry of 8-node shell element with six degrees of freedom.

Kinematic equations for the first-order shear deformation the-
ory including extension of the normal line can be obtained from
the 3D equations of the theory of elasticity by using a well-known
first-order approximation of a vector function with respect to the
coordinate &3. (Rikards et al. [32]). Further well-known geometric
relations for the shell in normal coordinates are used.

Let us assume that vector P characterizes the position of an
arbitrary point of the shell in the initial reference state (see point
B in Fig. 2) and vector Q is the position of the same point (point
B’) in the deformed state. The position of a point at the midsurface
of the shell (point A) in the initial state is characterized by vector P,
and position of the same point in the deformed state (point A’) is
characterized by vector Q. Normal curvilinear coordinates
& = [¢%,&4] at the midsurface of the shell in the initial state are de-
fined by the right-handed triad of the base vectors [a,, as]. Here, a
unit vector as is normal to the midsurface of shell. Therefore (see
Fig. 2).

P(&) = P(&) + &3as (1)

Similarly, curvilinear coordinates & = [£*,&] in the deformed state
is defined by the triad of vectors [A,,As]. In the deformed state,
the vector Az may be not perpendicular to the midsurface of shell.

Vector function Q can be expanded in a Taylor’s series with re-
spect to coordinate ¢; normal to the midsurface of shell.

QUM =Q(")+&VeQ-ag+- )

Here V ® Q = A, ® a* =G is a second-order tensor (see Luri'e, [33]),
which characterizes the gradient of strains with respect to coordi-
nate &3, V is a Hamiltonian operator, and ® is a dyadic product of
the tensors.

Further, the notations for displacement at the midsurface u and
displacement of an arbitrary point of shell u are introduced. The
following expressions can be written (see Fig. 2).

Q=P+u, Q=P+u (3)

From expressions (1)-(3) the representation of the displacement u
of an arbitrary point of the shell for the first-order approximation
can be obtained

u(&) =u() + &) 4)
Here ¢ is vector of rotation at the midsurface of shell

P(E) = A3(&%) — a3 (&%) 5)
where

A; =G a (6)

A three-dimensional Green’s strain tensor in the linear case
(infinitesimal strain theory) is given by

Fig. 2. Kinematics of the first-order shear deformation theory.
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