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a b s t r a c t

In this work, we develop a model for strongly-coupled, deformation-dependent diffusion in composite
media at finite strains. The coupling incorporates the effects of deformation into the diffusivity tensor.
A time-transient, three-dimensional variational formulation is developed and then discretized using
the Finite Element Method in conjunction with an implicit staggering scheme to resolve the coupled mul-
tiphysics. Numerical examples are provided to illustrate the model.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In many modern engineering applications, diffusion in solids
plays a major role in the operation of devices which are, in many
cases, constructed from composite media. As a species diffuses into
a solid, a complex physical process occurs, which primarily mani-
fests itself as macroscopic swelling. The diffusion process can have
a major effect on the operation resulting in large deformations and
stresses and, in some cases, failure. In this paper, we investigate
the phenomena of strong coupling between diffusion of a species
into a nonlinear elastic solid body and the concentration, deforma-
tion, and stresses in that body. We are particularly interested in fi-
ber-reinforced composite materials with different mechanical and
diffusive properties. We consider cases where the diffusion and
deformation are coupled in both directions, i.e. they affect one an-
other. We first investigate the qualitative behavior analytically,
then the time-transient, three-dimensional behavior for composite
systems by developing a variational formulation which is then dis-
cretized using the Finite Element Method, in conjunction with an
implicit staggering scheme.

Specifically, in this study we construct mathematical models
where we begin with the separate, well-established, models for
diffusion and finite elasticity. For diffusion, we consider enhance-
ments to Fick’s laws of diffusion. For elasticity, we consider a mod-
erate finite strain elastic model employing a Kirchhoff–Saint
Venant material. We consider material constants to be coupled

and consider strain-dependent diffusivity, where the diffusivity
tensor depends on the volumetric strain through the Jacobian
J = det(F). We also consider saturation effects, where a finite
amount of diffusing species is absorbed by the solid and the diffu-
sion process terminates. This is modeled as having a diffusivity
tensor that is dependent on species concentration.1 Early work on
the coupling of diffusion and deformation or stress was done by
Truesdell [1] Green and Adkins [2], and Adkins [3,4] have made ma-
jor advancements in the field. Later on, Aifantis et al. [5–7] did work
on stress-assisted diffusion, and also Mixture theory was used to
model the coupling by Rajagopal [8]. In the last decade or so, there
were recent theoretical advancements in nonlinear diffusion and
mechanics that we found to be most relevant to this study. Baek
and Srinivasa [9] came up with a more direct approach that deals
with the problem and compared it with mixture theory, finding both
theories to be comparable. Suo et al. analyzed large deformations in
gels [10], which was useful in the development of the present model.
For more complex modeling, including damage and thermal effects,
see Zohdi [11] and Duda et al. [12].

2. Modeling deformation-dependent diffusion

We establish the basic settings of this model in the reference
configuration. Capital letters are associated with the reference con-
figuration and lower-case letters are associated with the current
configuration. Letters with a tilde ð~�Þ are associated with diffusive
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processes, and the letters without any sign are mechanical variables.
For three dimensional diffusion, the most common constitutive laws
are known as Fick’s laws, where the flux is related to the gradient of
the concentration of a substance, eC , at a material point as,eJ ¼ �eDGradðeCÞ: ð1Þ

where D
�

is the diffusivity tensor. Conservation of mass in a material
point with no internal source terms can be written,

@eC
@t
¼ �DivðeJÞ; ð2Þ

where Div is the divergence operator with respect to the reference
configuration. Combining the two Eqs. (1), (2) yields

@eC
@t
¼ DivðeDGradðeCÞÞ ð3Þ

which is known as Fick’s law of diffusion. For mechanics, we use the
balance of linear momentum

DivðPÞ þ qref fref ¼ qref
€uref ð4Þ

where P is the first Piola–Kirchhoff stress, ()ref implies the reference
configuration, q is the mass density,f are the body forces, and €uref is
the second time derivative of the displacement. For elasticity, we
consider a Kirchhoff–Saint Venant nonlinear elastic material model

S ¼ E : E ð5Þ

where S is the Second Piola–Kirchhoff stress and E ¼ 1
2 ðC� IÞ is the

Green–Lagrange strain tensor. We define the strains due to diffu-
sion as Ec, and consider the diffusion tensor, D

�
, to be a function of

the mechanical deformation and the concentration as,eD ¼ eDðE; eCÞ: ð6Þ

This allows us to construct mathematical models which de-
scribe different physical phenomena. The modified Second Piola–
Kirchhoff stress becomes

S ¼ E : ðE� EcÞ ð7Þ

and the modified diffusion equation becomes

@eC
@t
¼ DivðeDðE; eCÞGradðeCÞÞ ð8Þ

where Grad is the gradient operator with respect to the reference
configuration.

3. Strain-dependent diffusivity

We assume that the diffusivity tensor, D
�

, is a function of the
deformation in general, and specifically a function of the volume
change through the Jacobian aseD ¼ eDðJÞ: ð9Þ

Some simple arguements provide guidance on constructing a model
for D

�
ðJÞ. For example, if we continuously compress the material, it is

reasonable to assume that the diffusivity will decrease to a lower lim-
it (becoming fully densified), which we will take to be equivalent to
zero diffusivity. As the volume increases, the magnitude of the diffu-
sivity will grow to values larger than of the reference configuration
(J > 1). In terms of a function, we require that D

�
ðJ ¼ 0Þ ¼ 0;

D
�
ðJ ¼ 1Þ ¼ eD0. The actual values are material dependent, and can

be found experimentally. We also assume that the function is smooth
and continuous. A function that satisfies these requirements is the
following:

eDðJÞ ¼ eD0
eaJ � 1
ea � 1

ð10Þ

where ‘a’ is a constant that is determined experimentally. For the
case where there are no deformations, the diffusivity tensor scales
to its initial value eD0. The plot for Eq. (10) can be seen in Fig. 1.

4. Swelling strains

We now consider some simple models for swelling strains (i.e.
J > 1).

4.1. Uniform swelling

In the simplest case, similar to thermo-elasticity, we consider
uniform (isotropic, or direction-independent swelling, i.e. see
[11]) defined via

EC ¼ bðeC � eC 0ÞI ð11Þ

where eC0 is a material initial concentration and b is a scalr material
constant that controls the magnitude of the stress resulting from
the swelling (similar to the coefficient of volumetric thermal expan-
sion, aj, in thermo-elasticity). This yields the Second Piola–Kirchoff
stress as

S ¼ E : ðE� bðeC � eC0ÞIÞ: ð12Þ

4.2. Non-uniform swelling

Alternatively, one may assume that the solid swells up non-uni-
formly (i.e anisotropic, or directionally-dependent). Specifically, it
has preferred directions in which it will swell (i.e. along the direc-
tion of material fibers). We define b as a material constant, and M is
a unit vector normal to the plane of isotropy in the reference con-
figuration (i.e. M is in the direction of the fibers in a fiber-compos-
ite material). We assume that the material will swell up in any
direction normal to the fiber direction, thus we use the projection
tensor I �M �M. With that, we define the stress as,

S ¼ E : ½E� bðeC � eC 0ÞðI�M�MÞ� ð13Þ

Remark. As mentioned earlier, beyond a certain concentration
level eC 1 (which is a material constant), the diffusivity is set to zero
so that the diffusion process is terminated. Below a certain
concentration level eC0 (again, a material constant) it should
initially retain its initial value of eD0. In the range ½eC0; eC1� smoothly,
we define the diffusivity as

D
�
ðeCÞ ¼ D

�
0 � ðD

�
0 � D

�
1Þ= exp

eC 0þeC 1
2 � eC

a

0@ 1Aþ 1

0@ 1A ð14Þ

Increasing 'a'

1
J

1

a J 1

a 1

Fig. 1. Volume dependent diffusivity.

414 D. Klepach, T.I. Zohdi / Composites: Part B 56 (2014) 413–423



Download English Version:

https://daneshyari.com/en/article/817951

Download Persian Version:

https://daneshyari.com/article/817951

Daneshyari.com

https://daneshyari.com/en/article/817951
https://daneshyari.com/article/817951
https://daneshyari.com

