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a b s t r a c t

We discuss a non-parametric algorithm to unfold detector effects from one-dimensional data distribu-
tions. Unfolding is performed by fitting a flexible spline model to the data using an unbinned maximum-
likelihood method while employing a smooth regularisation that maximises the relative entropy of the
solution with respect to an a priori guess. A regularisation weight is picked automatically such that it
minimises the mean integrated squared error of the fit. The algorithm scales to large data sets by
employing an adaptive binning scheme in regions of high density. An estimate of the uncertainty of the
solution is provided and shown to be accurate by studying the frequentist properties of the algorithm in
Monte-Carlo simulations. The simulations show that the regularisation bias decreases as the sample size
increases.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Experimentalists want to publish measurements that are inde-
pendent of the detection device. If the measurement is the
distribution of an observable – for example, the energies of cosmic
rays arriving at Earth – the finite resolution of the detector can be
an issue since it will smear out this distribution. Mathematically,
the true distribution b(x) of the variable x is convolved with a
kernel function Kdetðy; xÞ which describes the fluctuations and
losses introduced by the detector

f ðyÞ ¼
Z 1

�1
dx Kdetðy; xÞbðxÞ ð1Þ

so that we obtain a Fredholm integral equation of the first kind.
Only a particular realisation of the distorted distribution f(y) is
accessible in an experiment. The kernel Kdetðy; xÞ can be further
splitted into a conditional probability density Kðy; xÞ and a prob-
ability ϵðy; xÞ.

The conditional probability density Kðy; xÞ describes the fre-
quency of converting a quantity x into an observable y. It models
random fluctuations that occur in the detection process and may
include a non-linear response. The efficiency of the detector is
described by the detection probability ϵðy; xÞ. It summarises effects
that cause event loss, such as events missing the sensitive range of

the detector or events that are in range, but produce a signal below
the detection threshold.

If Kðy; xÞ and ϵðy; xÞ are known one can in principle solve Eq. (1)
for the distribution b(x). The task is straightforward if a parametric
model of b(x) exists, defined up to few free coefficients. In that
case Eq. (1) can be fitted to the data directly with a maximum-
likelihood method (this is sometimes called the forward folding
method [1]). If nothing is known about b(x), the task becomes very
difficult since we lack information about the complexity and
variability of the source distribution b(x). In that sense it is similar
to the challenging problem of non-parametric density estimation
[2]. Model-independent unfolding can be approximated by choos-
ing a parametric model with a very large number of parameters so
that b(x) can accommodate an arbitrary structure. However, since
it is impossible to obtain all information about b(x) from the finite
data, a regularisation needs to be added which enforces a degree
of smoothness on b(x). This effectively reduces the number of free
parameters to a tractable amount. Due to the regularisation, the
statistical estimate b̂ðxÞ of the true b(x) in general has a non-zero
bias: E½b̂ðxÞ�bðxÞ�≠0.

The art of unfolding is to find a regularisation that works well
for real-life problems and that achieves an optimal balance
between bias and statistical variance of the solution. A variety of
algorithms are used in high energy physics [3–7]. We add ARU1 to
this set, an algorithm with some conceptual improvements that
may improve the unfolding performance [8]. ARU was developed
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after studying the existing algorithms and uses central concepts of
the RUN algorithm [4] and the maximum-entropy unfolding [1,5].

Our goal was to create an algorithm that can be used as a black
box without requiring the user to tweak the algorithm for a specific
problem and that uses the maximum amount of information in the
data. One step into that direction is to avoid histogramming the data.
We fit Eq. (1) directly to the raw event distribution fyig after
expanding the unknown function b(x) into a sum of B-splines (like
in RUN) and performing the numerical integration of Eq. (1). We
show how an adaptive binning approach speeds up the solution of
problems with huge statistics. The details are given in Section 2.

The fit of b(x) is based on maximizing a regularized log-
likelihood. The regularisation is up to a term that ensures proper
normalisation of the relative entropy between the unfolded solu-
tion b(x) and a reference function g(x). The relative entropy is a
well-defined measure of the similarity of two probability density
functions and approaches zero as b(x) approaches g(x). By choos-
ing g(x) close to the correct solution we reduce the systematic bias.
We argue that a fit to the original data distribution corrected by
the detector efficiency is the best a priori guess of the final
solution.

This scheme is a generalisation of the maximum-entropy
regularisation [5] in which the reference distribution g(x) is the
uniform distribution. Like the latter our regularisation is invariant
to monotonic transformations x-x′ that do not change the
statistical information of the problem. This is an advantage over
regularisations of the Tikhonov-type [4,7,9] which do not share
this property.

Our algorithm adjusts the strength of the regularisation auto-
matically by minimising the mean integrated squared error (MISE)
of the fit which determines the optimal balance between bias and
variance of the estimate b̂ðxÞ for the given problem, following the
typical approach used in non-parametric density estimation [2].
The approach is explained in Section 3.

An analytical calculation of the uncertainty of the solution
completes the algorithm, shown in Section 4. We compare the
uncertainty estimate with the true frequentistic variance of the
solution using Monte-Carlo simulations in Section 5. We close
with a discussion and remarks on the use of the algorithm in
Section 6.

2. Regularised maximum-likelihood fit

We construct the objective function for our fit initially from the
maximum-likelihood principle. According to it, the best para-
meters ĉ of a model f(y) maximise the joint probability P of all
observations, the likelihood. As a matter of convention, we mini-
mise l1 ¼�ln P instead, which is equivalent.

In order to formulate the unfolding problem as a fit, we need a
flexible parametrisation of f(y). A good idea [4] is to expand the
unfolded distribution b(x) into a series of basis functions
bðxÞ ¼∑kckbkðxÞ, exploiting the linearity of Eq. (1):

f ðyÞ ¼
Z

dx ϵðy; xÞKðy; xÞbðxÞ

¼∑
k
ck

Z
dx ϵðy; xÞKðy; xÞbkðxÞ ¼∑

k
ckf kðyÞ: ð2Þ

The problem is thus reduced to a fit of the folded basis functions
fk(y).

A convenient choice for the basis functions bk(x) of the
unfolded distribution is B-splines [4,10], although other choices
are possible. B-splines are bell-shaped functions with finite sup-
port. They are non-negative, which allows us to impose the
mathematical condition bðxÞ40 by the constraint ck40 that is
supported by most numerical optimisation algorithms. A basis

spline bk(x) on a grid with m knots is defined by the recursion
formula

bk;0ðxÞ ¼
1 if xk ≤xoxkþ1

0 otherwise

�
ð3Þ

bk;n xð Þ ¼ x�xk
xkþn�xj

bk;n�1 xð Þ þ xkþnþ1�x
xkþnþ1�xkþ1

bkþ1;n�1 xð Þ;

k¼ 0;…;mþ n�2: ð4Þ
We use n¼3 and omit the index n in the following, so that
bkðxÞ≔bk;3ðxÞ. The grid of knots is extended by three virtual knots
to the left and the right of the interval in order to define the basis
splines at the borders properly. A grid of m knots defines m+2
basis splines bk(x) so that the spline model has m+2 coefficients.
No boundary conditions are enforced to reduce the number of
coefficients. An example of a spline curve is shown in Fig. 1.

The coefficient vector c needs to be very large in order to make
the model sufficiently adjustable to approximate the limit of
unbounded variance. Therefore, the fit will be under-constrained
and the minimum of the negative log-likelihood l1 will be a long
thin valley, leading to huge variance and strong anti-correlations
of the coefficients ĉ . The valley is constrained by adding a
weighted regularisation term wl2, constructed to have a minimum
at an a priori guess of the true solution. The solution ĉ to the
unfolding problem is then found by minimising the combination

lðcÞ ¼ l1ðcÞ þwl2ðcÞ ð5Þ
with standard non-linear optimisation algorithms [11–13]. The
price to pay for this approach is a statistical bias E½ĉ�c�≠0, since
the guess will differ from the correct solution in general.

From the frequentist point of view we constructed a biased
estimator with the intention of reducing the variance. From the
Bayesian point of view we added prior information to our estimation.

2.1. First part l1 of the regularised log-likelihood

We want to fit the shape and the normalisation of b(x) and
therefore construct the so-called extended likelihood function [1].
Let f nðyÞ ¼ f ðyÞ=ν be the normalized probability density function
(p.d.f.) that describes a set of data points yi, with ν¼ R

dy f ðyÞ
being the total expected number of observations. We assume
Poisson fluctuations for the realised number N of events and
obtain for the joint probability P of the data

P cð Þ ¼ νN

N!
e�ν∏

i

Z yiþΔyi

yi

dy f n yð Þ ⟶
Δyi-0

νN

N!
e�ν∏

i
f n yi
� �

Δyi

Fig. 1. Example of a spline model b(x) (black line) over a vector of four knots (black
dots). The shaded areas indicate the six scaled basis splines ckbkðxÞ that constitute
the curve.
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