
Shear buckling of orthotropic rectangular graphene sheet embedded
in an elastic medium in thermal environment

M. Mohammadi a,b,⇑, A. Farajpour c, A. Moradi a, M. Ghayour b

a Department of Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
b Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
c Young Researches and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 23 March 2013
Accepted 12 August 2013
Available online 22 August 2013

This article is dedicated to Professor Hossien
Mohammadi (Amir Hossien Mohammadi)
on the occasion of his 60th birthday

Keywords:
A. Nano-structures
B. Buckling
B. Elasticity
Nanoplate

a b s t r a c t

In this study, the buckling behavior of orthotropic rectangular nanoplate is studied. Nonlocal elasticity the-
ory has been implemented to investigation the shear buckling of orthotropic single-layered graphene
sheets (SLGSs) in thermal environment. Using the principle of virtual work, the governing equations are
derived for the orthotropic rectangular nanoplates. Differential quadrature method (DQM) is employed
and numerical solutions for the critical shear buckling load are obtained. Six boundary conditions are inves-
tigated. The influence of surrounding elastic medium, temperature change, material properties and effect of
boundary conditions on the shear buckling analysis of orthotropic SLGSs is studied. Numerical results show
that the critical shear buckling load of SLGSs is strongly dependent on the small scale coefficient.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the rapid development of technology, especially in micro-
and nano-scale fields, one must consider small scale effects and
atomic forces to obtain solutions with acceptable accuracy.
Neglecting these effects in some cases may result in completely
incorrect solutions and hence wrong designs. As conduction of
experiments in nano-level are difficult to control and theoretical
atomistic models are computationally intensive for relatively large
scale nanostructures, the continuum and semi-continuum [1,2]
models have been proven to be important tools in the study of
the nanostructures. There are various micro-continuum theories
such as couple stress theory [3], micro-morphic theory [4], strain
gradient elasticity theory [5] and nonlocal elasticity theory [6].
Among these theories, nonlocal elasticity theory has been widely
applied to various problems of physics including lattice dispersion
of elastic waves and dislocation mechanics [7]. In nonlocal elasticity
theory, the small-scale effects are captured by assuming the stress
at a point as a function not only of the strain at that point but also a
function of the strains at all other points in the domain. A lot of
work has already been done on the continuum models for stability
analysis of CNTs or similar micro or nanobeam like elements [8,9].

Recently, Murmu and Pradhan [10] applied nonlocal Timoshenko
theory and DQM for the stability analysis of embedded single-
walled carbon nanotubes. Behfar and Naghdabadi [11] investigated
the vibration behavior of multi-layer graphene sheets (MLGSs)
embedded in an elastic medium. Sakhee-pour et al. [12] investi-
gated the behavior of SLGSs using molecular structural mechanics.
Moosavi et al. [13] investigated vibration analysis of nanorings
using nonlocal continuum mechanics and shear deformable ring
theory. In their article, they showed that the nonlocal effects play
an important role in the vibration of nanorings and cannot be ne-
glected. Mohammadi et al. [14] studied the free transverse vibra-
tion analysis of circular and annular graphene sheets with various
boundary conditions using the nonlocal continuum plate model.
They are obtained explicit relations for natural frequencies through
direct separation of variables. They applied new version of differen-
tial quadrature method for vibration analysis of embedded single
layer circular nanoplate. The applications of graphene sheets in
electro-mechanical resonators [15], mass sensors and atomistic
dust detectors [16] are recently reported. Because of these applica-
tions, the increasing level of knowledge of buckling behavior of
graphene sheets becomes important for engineering design and
manufacture. Eltaher et al. [17] exploited the nonlocal functional
grade material for static and stability analysis of nanobeams. In that
paper, their results addressing the significance of the material dis-
tribution profile, nonlocal effect, and boundary conditions on the
bending and buckling behavior of nanobeams are presented.
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A version of nonlocal elasticity was proposed by Eltaher et al. [18] to
formulate a nonlocal version of Euler–Bernoulli beam theory. They
assumed that the material properties of FG nanobeams are assumed
to vary through the thickness according to a power law. Aksencer
and Aydogdu [19] reported vibration and buckling of nanoplates
with nonlocal elasticity theory. In that paper Navier solution and
levy type solution are used. In their paper, they studied buckling
of nanoplate under biaxial in-plane pre-load. They showed that
nonlocality effects should be considered for nanoscale plates.
Farajpour et al. [20] investigated effect of surface and small scale
parameter on the axisymmetric buckling of circular graphene sheet
on thermal environment. They valid their results with molecular
dynamic (MD) and showed that their results were exactly in agree-
ment with the results of MD. Microtubules (MTs) are protein orga-
nized in a network that is interconnected with micro-filaments and
intermediate filaments to form the cytoskeleton structures Micro-
tubules. The mechanical properties of MTs play an important role
in process such as cell division and intracellular transport. There
have been a number of mathematical studies in recent years deal-
ing with the mechanical properties of MTs [21–24]. Bending analy-
sis of microtubules using nonlocal Euler–Bernoulli beam theory
were used by Civalek and Demir [22] who consider nonlocal elastic-
ity for bending analysis of microtubules protein. They discussed
about the influence of nonlocal parameter on the static response
of microtubules protein. Akgöz and Civalek [23] applied strain gra-
diant theory for buckling analysis of protein microtubules. In that
paper, the governing equations for buckling and related boundary
conditions are obtained by using the variational principle in con-
junctions with the strain gradient elasticity. The strain gradient
elasticity and modified couple stress were used for buckling analy-
sis of axially loaded micro-scaled beams by Akgöz and Civalek [24].
They showed that the critical buckling load predicted by the mod-
ified strain gradient elasticity theory (MSGT) is about 3.2 times than
that predicted by the modified couple stress theory (MCST) for mi-
cro-scaled beam. Ghorbanpour Arani et al. [25] studied the thermal
effect on buckling analysis of a double-walled carbon nanotube
embedded on the Pasternak foundation. In their paper, the interac-
tion between matrix and the outer tube is modeled as a Pasternak
foundation. In that paper, the interaction between matrix and the
outer tube is modeled as a Pasternak foundation and the results
are obtained of numerical simulation indicate that for any specific
circumferential wave number (n), the nonlocal critical buckling
pressure is related directly to the axial half wave number (m). Has-
hemi and Samaei [26] have used nonlocal elasticity model to inves-
tigate the buckling analysis of micro-scale plates. Their results
showed that buckling loads of biaxially compressed micro-scale
plate depend on the nonlocal parameter. Narendar [27] presented
buckling analysis of micro and nano-scale plates based nonlocal
scale effects. In that paper, he used two-variable refined plate the-
ory for buckling of nanoplate under biaxial in-plane pre-load. He
showed that the refined plate theory did not require shear correc-
tion factor. In his paper, he did not consider effect of elastic medium
on the buckling analysis of rectangular nanoplate. Mahmoud et al.
[28] investigated static analysis of nanobeams including surface ef-
fects and nonlocal elasticity theory. In that paper, the informations
about the forces between atoms, and the internal length scale are
proposed by the nonlocal Eringen model. Farajpour et al. [29] stud-
ied axisymmetric buckling of the circular graphene sheets with the
nonlocal continuum plate model. In that paper, the buckling behav-
ior of circular nanoplates under uniform radial compression is stud-
ied. Explicit expressions for the buckling loads are obtained for
clamped and simply supported boundary conditions. It is shown
that nonlocal effects play an important role in the buckling of circu-
lar nanoplates. Nateghi and Salamat-talab [30] investigated Ther-
mal effect on size dependent behavior of functionally graded
microbeams based on modified couple stress theory. They used

modified couple stress in their work. They showed that Study of
power index of material distribution proved that the behavior
of FG microbeams differ considerably from homogeneous isotropic
ones.

To the best knowledge of authors, it is the first time the non-
local elasticity theory has been successfully applied to analysis of
shear buckling for the orthotropic rectangular nanoplate.

In the current work attempt is made to investigate the shear
buckling of rectangular graphene sheets embedded in an elastic
medium under thermal environment. The influence of the sur-
rounding elastic medium on the critical shear buckling load of the
SLGSs is investigated. Both Winkler-type and Pasternak-type mod-
els are employed to simulate the interaction of the graphene sheets
with a surrounding elastic medium. Differential quadrature method
(DQM) is being used for the numerical solutions of the associated
governing differential equations. The obtained results are subse-
quently compared with valid result reported in the literature. The
effects of (a) small scale parameter, (b) stiffness of the surrounding
elastic medium, (c) aspect ratio, (d) boundary conditions, (e) Ther-
mal effect and (f) material properties on the critical shear buckling
load of SLGSs are examined. The present work would be helpful
while designing NEMS/MEMS devices using graphene sheets.

2. Nonlocal plate model

Nonlocal continuum theory states that the stress at a reference
point x in an elastic continuum depends not only on strain at x but
also on the strains at all other points x0 in the body [4,6]. The basic
equations for a linear homogenous elastic body using nonlocal
elasticity theory are

rij þ fi ¼ q€ui ð1Þ

rijðxÞ ¼
Z

kðjx� x0j;lÞCijkleklðx0ÞdVðx0Þ; 8x 2 V ; ð2Þ

where rij, f, q and ui are the nonlocal elasticity stress tensor, mass
density, body forces, and the displacement vector at point x, respec-
tively. Cijkl is the local stress tensor at any point x0 in the body which
is related to the strain tensor ekl. k (jx � x0j, g), jx � x0j and l = (e0li/a)
are the nonlocal kernel function, Euclidean distance, and material
constant that depends on the internal characteristic length li (such
as the C–C bond length, lattice parameter) and external characteris-
tic length a (like graphene sheet length, wave length, crack length),
respectively. The parameter e0 is Eringen’s nonlocal elasticity con-
stant suitable to each material. The differential form of Eq. (1) can
be written as [20]:

ð1� ðe0liÞ2r2Þrnl ¼ ½C�½feg � fkgDT� ð3Þ

where ‘‘:’’ represents the double dot product. r2 is the Laplacian
operator and is given by r2 = (@2/@ x2 + @2/@y2). In two-dimensional
forms the stress–strain relations are written as
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where E1 and E2 are Young’s modulus, G12 is shear modulus, and t12,
t21 are Poisson’s ratios and axx and ayy are the coefficient of thermal
expansion along the principle material directions x and y, respec-
tively. rnl

xx; rnl
yy and rnl

xy represent the nonlocal stress tensors. The
strains in terms of displacement components in the middle surface
can be written
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