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a b s t r a c t

Discrete damage mechanics (DDM) refers to micromechanics of damage constitutive models that, when
incorporated into commercial finite element software via user material subroutines, are able to predict
intralaminar transverse and shear damage initiation and evolution in terms of the fracture toughness
of the composite. A methodology for determination of the fracture toughness is presented, based on fit-
ting DDM model results to available experimental data. The applicability of the DDM model is studied by
comparison to available experimental data for Carbon Epoxy laminates. Sensitivity of the DDM model to
h- and p-refinement is studied. Also, prediction of modulus vs. applied strain is contrasted with ply dis-
count results and the effect of in situ correction of strength is highlighted.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Prediction of damage initiation and accumulation in polymer
matrix, laminated composites is of great interest for the design,
production, certification, and monitoring of an increasingly large
variety of structures. Matrix cracking due to transverse tensile
and shear deformations is considered in this manuscript. Matrix
cracking is normally the first mode of damage and, if left unmiti-
gated often leads to other modes such as delamination, and even
fiber failure of adjacent laminas due to load redistribution. Further-
more, extensive cracking leads to increased permeability and ex-
poses the fibers to deleterious environmental attack.

The earliest, simplest and least accurate modeling technique to
address matrix damage is perhaps the ply discount method [1, Sec-
tion 7.3.1]. Ply discount is used in this work as a baseline for con-
trasting predictions obtained with the Discrete Damage Mechanics
(DDM) method. Although many other models exist, such as [2–12],
Abaqus PDA [13–15], and several plugins [16,17], this manuscript
focuses on DDM because its inherent features make it attractive.

Briefly, DDM [18] is a constitutive modeler that is inherently
mesh independent, thus not requiring the user to choose a charac-
teristic length. Furthermore, only two material parameters, the frac-
ture toughness in modes I and II, are required to predict both
initiation and evolution of transverse and shear damage. Since
transverse and shear strengths are not used to predict damage ini-

tiation, but rather fracture toughness is used, DDM automatically
accounts for in situ effects. No additional parameters are required
to predict damage evolution. Also, as it is shown in this work, DDM
parameters can be identified for Carbon fiber composites. This is
not easily done for continuum damage mechanics (CDM) models
because their state variables, namely the damage variables, are
not measurable [19]. As a result, one is faced with identifying the
model parameters using a macroscopic effect, such as the experi-
mentally measured loss of stiffness, which for Carbon fiber com-
posites is small [20]. Finally, DDM is available to be used in
conjunction with commercial FEA environments such as Abaqus1

[15] and ANSYS/Mechanical2 [21], in the form of UMAT, UGENS
[22], and USERMAT [23].

Therefore, the objective of this manuscript is to propose a meth-
odology to determine values for the material properties required
by the DDM model. In this work, the values for the parameters
are found using available experimental data and a rational proce-
dure. Once values are found, the DDM model is applied for predict-
ing other, independent results, and conclusions are drawn about
the applicability of the model.

No standard test method exist to measure the intralaminar frac-
ture toughness. Although standards exist for measuring interlami-
nar fracture toughness in mode I (ASTM D5528) and proposed
methods exists for mode II [24,25], intralaminar properties are
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not the same as interlaminar ones. Thus the need for a method to
find the intralaminar fracture toughness using available data for a
broad set of material systems.

2. Discrete damage mechanics

Given the crack density and the shell strain, DDM [18] updates
the state variable, i.e., the crack density, and calculates the shell
stress resultant and secant stiffness matrix A, B, D, and/or the tan-
gent stiffness matrix, all of them functions of crack density. The
crack density k is an array containing the crack density for all the
laminas at an integration point of the shell element. The strain re-
fers to the shell strain array �, j, conjugate to the shell stress resul-
tant array N, M. In this way, DDM is a constitutive model that can
be implemented as a user material subroutine (UMAT, VUMAT,
USERMAT) [23, usermatps-901] for flat plane stress elements and
as a user general section (UGENS) for curved shell elements [22,
ugens-std].

2.1. Damage initiation and evolution

Damage initiation and evolution are controlled by a single
equation representing the Griffith’s criterion for an intralaminar
crack, i.e., the undamaging domain is defined by

gð�; kÞ ¼ max
GIð�; kÞ

GIC
;
GIIð�; kÞ

GIIC

� �
� 1 6 0 ð1Þ

where GI, GII are the strain energy release rates (ERR) in modes I and
II, calculated with (15) and (16), and GIC, GIIC are the invariant mate-
rial properties representing the energy necessary to create a new
crack. We shall see that for fixed strain, both GI, GII are decreasing
functions of k. Therefore, (1) exhibits strain-hardening as a function
of crack density k, and thus stress-softening as a function of strain �.

DDM calculates GI, GII using a micromechanics of damage model
that reduces the 3D equilibrium equations

@ri

@xj
þ fi ¼ q

@2ui

@t2 ; i; j ¼ 1 . . . 3 ð2Þ

to 2D using the following approximations. First, a state of plane
stress for symmetric laminates under membrane loads allows us
to eliminate the u3 component of the displacement, by using the
following

r3 ¼ 0 ð3Þ
@u3

@xi
¼ 0; i ¼ 1;2 ð4Þ

Then, (2) are recast in terms of the thickness average of the dis-
placements in each lamina defined as follows

ûðkÞi ¼
Z hk=2

�hk=2
uiðzÞdz; i ¼ 1;2 ð5Þ

where hk is the thickness of lamina k. Next, the intralaminar shear
stress components sj3, with j = 1, 2, are assumed to vary linearly
in each lamina

sðkÞj3 ðx3Þ ¼ sk�1;k
j3 þ sk;kþ1

j3 � sk�1;k
j3

� � x3 � xk�1;k
3

hk
; j ¼ 1;2 ð6Þ

With these assumptions, the 3D equilibrium Eq. (2) reduce to a
system of 2n partial differential equations in 2D, with 2 equations
per lamina, in terms of displacements, where n is the number of
laminas in the laminate.

Experimental [26] and theoretical considerations [1, Sec-
tion 7.2.1] support the assumption of periodically spaced cracks
that propagate suddenly, in a unstable fashion, through the thick-

ness of the lamina and along the fiber direction. Therefore, the do-
main is that of a representative volume element (RVE) spanning
the laminate thickness, between two adjacent cracks, as shown
in Fig. 1. The length 2l of the RVE is inversely proportional to the
crack density, i.e.,

k ¼ 1=2l ð7Þ

where 2l is the distance between two cracks.
In this way, the crack density enters the model through the

length of the RVE. Since the ERR is computed in this RVE, which
is independent of the finite element discretization, coupled to the
fact that the constitutive model is formulated in terms of displace-
ments rather than strains, the constitutive model is inherently
mesh independent, without the need for choosing a characteristic
length. Such mesh independence is corroborated by numerical re-
sults by plotting the reaction force vs. applied displacement on the
boundary.

The PDE system is then solved with the following boundary
conditions:

� Free stress boundary at the cracked surfaces. The surface of the
cracks in lamina c, located at x = ±l, are free boundaries, and
thus subject to zero stress, with zero resultant force, as follows

hc

Z 1=2

�1=2
r̂ðcÞj ðx1; lÞdx1 ¼ 0; j ¼ 2;6 ð8Þ

where hc is the thickness of the cracked lamina.
� Displacement compatibility. All laminas m = 1. . .n with n being

the number of laminas, and m – c, that is, excluding the crack-
ing lamina c, undergo the same displacement at the boundaries
(�l, l) when subjected to a membrane state of strain. Taking an
arbitrary lamina r – c as a reference, the remainder displace-
ments are constrained as follows:

ûðmÞj ðx1;�lÞ ¼ ûðrÞj ðx1;�lÞ; 8m – c; j ¼ 1;2 ð9Þ

� Equilibrium. The stress resultant from the internal stress equil-
ibrates the applied load.
In the direction parallel to the surface of the cracks (fiber direc-
tion x1) the load N1 is supported by all the laminas

1
2l

XN

k¼1

hk

Z l

�l
r̂ðkÞ1 ð1=2; x2Þdx2 ¼ N1 ð10Þ

In the direction normal to the crack surface (x2 direction) only the
uncracked laminas m – c carry normal and shear loads

X
m–k

hm

Z 1=2

1=2
r̂ðmÞj ðx1; lÞdx1 ¼ Nj; j ¼ 2;6 ð11Þ

The solution of the PDE system yields the displacements in all
laminas ûðkÞi , and by differentiation, the strains in all laminas. Next,

Fig. 1. Representative volume element between two adjacent cracks.
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