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a b s t r a c t

In this paper, the refined pate theory is improved to account for the effect of thickness stretching in func-
tionally graded plates. The refined plate theory has fewer number of unknowns and equations of motion
than the first-order shear deformation theory, but accounts for the transverse shear deformation effects
without requiring shear correction factors. The displacement field of the refined plate theory is modified
by assuming a parabolic variation of the transverse displacement through the thickness, and conse-
quently, the thickness stretching effect is taken into consideration. Closed-form solutions of simply sup-
ported rectangular plates are presented, and the obtained results are compared with 3D solutions and
those predicted by higher-order shear deformation theories. Verification studies show that the proposed
theory is not only more accurate than the refined plate theory, but also comparable with the higher-order
shear deformation theories which contain more number of unknowns.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of functionally graded materials (FGMs) was first
introduced in 1984 by material scientists in the Sendai area of
Japan [1]. FGM is a class of composite materials that has
continuous variation of material properties from one surface to
another and thus eliminates the stress concentration found in
laminated composites. Typically, the FGM is made from a mixture
of a ceramic and a metal. FGMs are widely used in many structural
applications such as mechanical, aerospace, civil, and automotive.
When the application of FGMs increases, more accurate theories
are required to predict their responses.

Since the shear deformation effects are more pronounced in
thick plates or plates made of advanced composites like FGMs,
shear deformation theories such as first-order shear deformation
theory (FSDT) and higher-order shear deformation theories
(HSDTs) should be used to analyze functionally graded (FG) plates.
The FSDT gives acceptable results, but requires a shear correction
factor [2,3]. Whereas, the HSDTs [4–16] do not require a shear cor-
rection factor, but their equations of motion are more complicated
than those of the FSDT. Therefore, Shimpi [17] has developed a re-
fined plate theory (RPT) which is simple to use.

The RPT of Shimpi [17] accounts for a parabolic variation of the
transverse shear strains through the thickness, and hence, a shear

correction factor is not required. The displacement field of the RPT
[17] is chosen based on the partition of the transverse displace-
ments into the bending and shear parts. In fact, the idea of
partitioning the transverse displacements into the bending and
shear components is first proposed by Huffington [18], and later
adopted by Krishna Murty [19] and Senthilnathan et al. [20]. The
most interesting feature of the RPT [17] is that it contains fewer
unknowns and governing equations than those of the FSDT and
does not require a shear correction factor. Thus, it is the most
efficient theory. The RPT was first developed for isotropic plates
[17,21–23], and recently extended to orthotropic plates [24–28],
laminated composite plates [29,30], laminated composite beams
[31,32], FG plates [33–40], FG sandwich plates [41–43], nanobeams
[44], and nanoplates [45–47]. It should be noted that the
above-mentioned theories neglect the thickness stretching effect
(i.e., ez = 0) by assuming a constant transverse displacement
through the thickness of the plate. This assumption is appropriate
for thin or moderately thick FG plates, but is inadequate for thick
FG plates [48]. The effect of the thickness stretching in FG plates
was studied by Carrera et al. [48], and it becomes significant in
thick plates. Thus, it should be taken into consideration.

The purpose of this paper is to improve the RPT [17] by account-
ing for the effect of thickness stretching in FG plates. The displace-
ment field of the RPT [17] is modified by assuming a parabolic
variation of the transverse displacement through the thickness,
and consequently, the thickness stretching effect is taken into con-
sideration. The equations of motion are derived from Hamilton’s
principle. Analytical solutions for bending and vibration problems
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are obtained for a simply supported rectangular plate. Numerical
examples are presented to verify the accuracy of the present study.

2. RPT accounting for thickness stretching effect

The RPT of Shimpi [17] is developed based on the following
assumptions: (1) the in-plane and transverse displacements con-
sist of bending and shear parts; (2) the bending parts of in-plane
displacements are similar to those given by the classical plate the-
ory; and (3) the shear parts of the in-plane displacements give rise
to a parabolic variation of the shear strains, and hence to shear
stresses through the thickness of the plate in such a way that the
shear stresses vanish on the top and bottom surfaces. Based on
the above assumptions, the displacement field of the RPT is ob-
tained as [17]

u1ðx; y; z; tÞ ¼ uðx; y; tÞ � z @wb
@x � f ðzÞ @ws

@x

u2ðx; y; z; tÞ ¼ mðx; y; tÞ � z @wb
@y � f ðzÞ @ws

@y

u3ðx; y; z; tÞ ¼ wbðx; y; tÞ þwsðx; y; tÞ

ð1Þ

where f(z)=�z/4+5z3/3h2; (u1, u2, u3) are the the displacements
along the (x, y, z) coordinate directions, respectively; u and v denote
the displacements along the x and y coordinate directions of a point
on the midplane of the plate; wb and ws are the bending and shear
parts of the transverse displacement, respectively; h is the thickness
of the plate. As mentioned previously, the RPT ignores the thickness
stretching effect due to assuming a contant transverse displacement
through the thickness. To account for the thickness stretching ef-
fect, the displacement field in Eq. (1) is modified by adding high-
er-order terms for the transverse displacement as

u1ðx; y; z; tÞ ¼ uðx; y; tÞ � z @wb
@x � f ðzÞ @ws

@x

u2ðx; y; z; tÞ ¼ mðx; y; tÞ � z @wb
@y � f ðzÞ @ws

@y

u3ðx; y; z; tÞ ¼ wbðx; y; tÞ þwsðx; y; tÞ þ gðzÞwzðx; y; tÞ

ð2Þ

where wz is an unknown diplacement function accounting for the
thickness stretching effect; and g(z) is a shape function which is
determined from the stress-free boundary conditions on the top
and bottom surfaces of the plate. Using the same procedures pre-
sented by Reddy [49], the shape function g(Z) is obtained as

gðzÞ ¼ 1� f 0ðzÞ ¼ 5
4

1� 4z2

h2

� �
ð3Þ

The linear strains associated with the new displacement field in
Eq. (2) are:

ex ¼
@u
@x
� z

@2wb

@x2 � f ðzÞ @
2ws

@x2 ð4aÞ

ey ¼
@m
@y
� z

@2wb

@y2 � f ðzÞ @
2ws

@y2 ð4bÞ

ez ¼ g0ðzÞwz ð4cÞ

cxy ¼
@u
@y
þ @m
@x
� 2z

@2wb

@x@y
� 2f ðzÞ @

2ws

@x@y
ð4dÞ

cxz ¼ gðzÞ @ws

@x
þ @wz

@x

� �
ð4eÞ

cyz ¼ gðzÞ @ws

@y
þ @wz

@y

� �
ð4fÞ

The stresses are obtained from the constitutive relations as

rx

ry

rz

rxy

rxz

ryz

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C66 0 0
0 0 0 0 C55 0
0 0 0 0 0 C44

2
666666664

3
777777775

ex

ey

ez

cxy

cxz

cyz

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð5Þ

where Cij are the 3D elastic constants given by

C11 ¼ C22 ¼ C33 ¼
ð1� mÞE

ð1� 2mÞð1þ mÞ ð6aÞ

C12 ¼ C13 ¼ C23 ¼
mE

ð1� 2mÞð1þ mÞ ð6bÞ

C44 ¼ C55 ¼ C66 ¼
E

2ð1þ mÞ ð6cÞ

If the thickness stretching effect is omitted (i.e., ez = 0), the con-
stitutive relations in Eq. (5) are rewritten as

rx

ry

rxy

ryz

rxz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ E

1� m2

1 m 0 0 0
m 1 0 0 0
0 0 ð1�mÞ

2 0 0

0 0 0 ð1�mÞ
2 0

0 0 0 0 ð1�mÞ
2

2
6666664

3
7777775

ex

ey
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cxz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð7Þ

where E and m are Young’s modulus and Poisson’s ratio, respec-
tively, of a FG plate. Since the effects of Poisson’s ratio m on the re-
sponse of FG plates are very small [50,51], it is assumed to be
constant for convenience. In this study, Young’s modulus is as-
sumed to vary through the plate thickness according to either the
exponential or the power law distribution of the volume fractions
of the constituents. According to the exponential distribution,
Young’s modulus E(z) is given by [52]

EðzÞ ¼ E0epð0:5þz=hÞ ð8Þ

where Em = E0 and Ec = E0ep denote Young’s modulus of the bottom
(as metal) and top (as ceramic) surfaces of the FG plate, respec-
tively; E0 is Young’s modulus of the homogeneous plate; and p is
a parameter that indicates the material variation through the plate
thickness. According to the power law distribution with Mori–Tana-
ka scheme, the bulk modulus K(z) is given by [53,54]

KðzÞ ¼ Km þ ðKc � KmÞ
Vc

1þ Vm
Kc�Km

Kmþ4=3Gm

ð9Þ

where subscripts m and c represent the metal and ceramic constit-
uents, respectively; G is the shear modulus; and the volume frac-
tions of the metal phase Vm and ceramic phase Vc are given by

Vm ¼ 1� Vc and Vc ¼ ð0:5þ z=hÞp ð10Þ

Recall that the bulk and shear modulus are related to Young’s
modulus and Poisson ratio by K = E/3(1 � 2m) and G = E/2(1 + m).
Thus, by rewriting Eq. (9) in terms of E and m, the effective Young’s
modulus E(Z) is obtained as

EðzÞ ¼ Em þ ðEc � EmÞ
Vc

1þ Vm
Ec
Em
� 1

� �
1þm

3�3m

ð11Þ

The mass density q(z) is estimated using the power law distri-
bution with Voigt’s rule of mixtures as

qðzÞ ¼ qmVm þ qcVc ð12Þ

The strain energy of a plate can be expressed as
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