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a b s t r a c t

Young’s modulus of unidirectional glass fiber reinforced polymer (GFRP) composites for wind energy
applications were studied using analytical, numerical and experimental methods. In order to explore
the effect of fiber orientation angle on the Young’s modulus of composites, from the basic theory of elastic
mechanics, a procedure which can be applied to evaluate the elastic stiffness matrix of GFRP composite as
an analytical function of fiber orientation angle (from 0� to 90�), was developed. At the same time, differ-
ent finite element models with inclined glass fiber were developed via the ABAQUS Scripting Interface.
Results indicate that Young’s modulus of the composites strongly depends on the fiber orientation angles.
A U-shaped dependency of the Young’s modulus of composites on the inclined angle of fiber is found,
which agree well with the experimental results. The shear modulus is found to have significant effect
on the composites’ Young’s modulus, too. The effect of volume content of glass fiber on the Young’s mod-
ulus of composites was investigated. Results indicate the relation between them is nearly linear. The
results of the investigation are expected to provide some design guideline for the microstructural optimi-
zation of the glass fiber reinforced composites.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Polymer materials reinforced with glass fiber have received tre-
mendous attention in both scientific and industrial communities
due to their extraordinary enhanced properties, such as lower
weight, higher toughness and higher strength characteristics. In re-
sponse to these requirements, research on composites has at-
tracted much attention, which results in numerous publications
[1–11].

In order to evaluate the mechanical behaviors of composites
materials, different approaches, including experimental investiga-
tion, numerical simulations and theoretical modeling, were em-
ployed [12–16]. For example, the fiber bundle model has been
used to study the damage behaviors of fiber while loading along
the fibers [17]. The numerical continuum mechanical models, such
as finite element models, allow the incorporation of many different
features of the nonlinear material behaviors and the analysis of the
interaction of available and evolving microstructural elements
[18]. Many computational experiments of damage and failure in
composites have been done by employing numerical continuum
mechanical models [19–22]. The shear lag and other analytical
models based on simplifying assumptions are applicable mainly

to the linear elastic material behaviors and relatively simple, peri-
odic microgeometrics. They are often used to analyze the load
transfer and multiple cracking in composites [23]. The fracture
mechanics-based models are often used to the cases of fiber bridg-
ing analysis of elastic or homogeneous material [24].

Additional, experimental investigation about mechanical
behaviors of GFRP also made great advance. For example, SEM
(scanning electron microscopy) in situ experiments of damage
growth in GFRP composite under three-point bending loads were
carried out. The dependence of mechanical parameters on the ori-
entation angles of fibers was analyzed [25]. The tensile strength
and fracture surface characterization of sized and unsized glass fi-
bers were examined by single fiber tensile tests. The experimental
tests clearly indicated that the unsized fibers were weaker in the
low strength range, but had similar strength in the high strength
range [26]. The interfacial shear strength between the fiber and
the matrix of the fiber embedded matrix specimen was calculated
by single fiber fragmentation test and fiber strengths of both sized
and unsized fiber were found [27].

As a typical transverse isotropic material, the elastic properties
of GFRP are characterized by five elastic constants. Fiber orienta-
tion with respect to loading direction is one of the most important
parameters affecting mechanical properties of fiber reinforced
composites. However, in case of Young’s modulus, there is less re-
ported on this aspect from theory, experiment or numerical
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simulation. In the present work, theoretical analysis, finite element
models as well as experimental investigations were used to study
the stiffness, i.e. Young’s modulus, of glass fiber reinforced com-
posites. Composites cells with different glass fiber volume content
were also simulated and the effect of shear modulus G on the
Young’s modulus was also analyzed.

2. Theoretical analysis

2.1. Transformation of strain and stress

Define the stress and strain vectors, in the coordinate system
xoy, as shown in Fig. 1(a), as:

r ¼ r11r22r33s12s13s23½ �T ð1Þ
e ¼ e11e22e33c12c13c23½ �T ð2Þ

The stiffness matrix in the coordinate system xoy is D. Then the
stress vector, strain vector and the stiffness matrix satisfy:

r ¼ De ð3Þ

After a transformation, as shown in Fig. 1(c), we can obtain:

r0 ¼ T1ðaÞr ð4Þ
e0 ¼ T2ðaÞe ð5Þ

where,

T1ðaÞ ¼

cos2 a sin2 a 0 sin 2a 0 0
sin2 a cos2 a 0 � sin 2a 0 0

0 0 1 0 0 0
� 1

2 sin 2a 1
2 sin 2a 0 cos 2a 0 0

0 0 0 0 cos a sin a
0 0 0 0 � sina cos a

2
6666666664

3
7777777775

ð6Þ

T2ðaÞ ¼

cos2 a sin2 a 0 � 1
2 sin 2a 0 0

sin2 a cos2 a 0 1
2 sin 2a 0 0

0 0 1 0 0 0
sin 2a � sin 2a 0 cos 2a 0 0

0 0 0 0 cos a � sina
0 0 0 0 sina cos a

2
6666666664

3
7777777775

ð7Þ

Then in the coordinate system x0o0y0,

r0 ¼ D0ðaÞe0 ð8Þ

where,

D0 ¼ T1ðaÞDT�1
2 ðaÞ ð9Þ

Thus, it is possible to evaluate the stiffness matrix of any fiber
orientation angle, which is the angle between fiber direction and
loading direction, according to transverse stiffness matrix for
transverse isotropic material.

2.2. Calculation of transformed stiffness matrix

A special subclass of orthotropy is transverse isotropy, which
is characterized by a plane of isotropy at every point in the
material. GFRP composites could be considered as transverse
isotropy material macroscopically. Assuming the 2–3 plane to
be the plane of isotropy at every point, transverse isotropy re-
quires E2 = E3 = Ep, m12 = m13 = mtp, m21 = m31 = mpt and G21 = G31 = Gt,
where p and t stand for ‘‘in-plane’’ and ‘‘transverse,’’ respec-
tively. Thus, while mtp has the physical interpretation of the
Poisson’s ratio that characterizes the strain in the plane of isot-
ropy resulting from stress normal to it, mpt characterizes the
transverse strain in the direction normal to the plane of isotropy
resulting from stress in the plane of isotropy. In general, the
quantities mtp is not equal to mpt and they are related by
mtp/Et = mpt/Ep. The stress–strain laws reduce to:

e11

e22

e33

c12

c13

c23

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

1=Et �mpt=Ep �mpt=Et 0 0 0
�mtp=Et 1=Ep �mp=Ep 0 0 0
�mtp=Et �mp=Ep 1=Ep 0 0 0

0 0 0 1=Gt 0 0
0 0 0 0 1=Gt 0
0 0 0 0 0 1=Gp

2
666666664

3
777777775
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8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
ð10Þ

where Gp = Ep/2(1 + mp) and the total number of independent con-
stants is five.

The stability criterion requires that E > 0, G > 0 and �1 < m < 0.5.
The value of Et can be taken from experiment data. Et took 15GPa in
this study. Transverse isotropy materials have Et = E11 > E22 = -
E33 = Ep, Ep was assumed to be 10 GPa. According to typical
mechanical parameters for transverse isotropy material, we took
mp = 0.25, mtp = 0.3, and Gt = 2 GPa. Substituting these values into
the flexibility matrix, then

C ¼

0:067 �0:02 �0:02 0 0 0
�0:02 0:1 �0:025 0 0 0
�0:02 �0:025 0:1 0 0 0

0 0 0 0:5 0 0
0 0 0 0 0:5 0
0 0 0 0 0 0:25

2
666666664

3
777777775

ð11Þ

The stiffness matrix D will be:

(a) (b) (c)
Fig. 1. Definition of two coordinate systems.
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