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a b s t r a c t

The growing usage of short-flax-fiber-reinforced polymer composites in such applications as automotive
industry necessitates the prediction of their mechanical response up to and beyond the limit of elasticity.
Due to the imperfect, mechanical interlocking-dominated adhesion of natural fibers to most polymers,
both fiber debonding and matrix yielding contribute to the non-linear deformation. In the present study,
the deformation under an active loading of a short misaligned fiber composite is modeled by the orien-
tation averaging approach, employing an analytical description of the behavior of a unit cell (UC), the
parameters of which are determined using a FEM analysis of UC response under selected loading modes.
The model is applied to the prediction of stress–strain diagrams in tension of flax/polypropylene compos-
ites with different fiber volume fractions.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Short-natural-fiber-reinforced polymer composites have found
applications in diverse non-structural components, e.g. in automo-
tive industry [1,2]. Their deformation under service loads is gov-
erned by the mechanical properties of the constituents, as well
as fiber length and orientation distributions. Several methods of
different accuracy and complexity have been elaborated for evalu-
ation of the elastic properties of unidirectionally aligned (UD)
short-fiber composites [3]. The effect of fiber misalignment can
then be allowed for by orientation averaging. The simplest method
of averaging is based on the Voigt, or equistrain assumption (see,
e.g. [3]). The average stress rc

ij in a misaligned-fiber composite un-
der an applied strain ec

ij is than given by:

rc
ijðecÞ ¼ 1

4p

Z 2p

0

Z p

0
rUD

ij ðec;u; hÞf ðu; hÞ sin hdudh ð1Þ

where f ðu; hÞ designates the fiber orientation distribution density
as a function of the azimuthal, u, and elevation, h, angles and
rUD

ij ðec;u; hÞ stands for the stress under a given applied strain in a
UD-reinforced computational element of the composite. The latter
can be interpreted as a unit cell (UC) or a UD short-fiber composite
with the same fiber volume fraction as that of the misaligned-fiber
composite.

For linear elastic composites, Eq. (1) reduces to averaging the
stiffness tensor of a UD short-fiber composite according to the ac-
tual fiber orientation distribution in the misaligned composite.
This procedure has been shown to produce reasonably accurate
estimates for both inorganic and natural fiber composites, see
e.g. [4,5]. Furthermore, the accuracy of the approach has been
verified by numerical simulations [6,7]. Moreover, using the
average fiber length in modeling provides a sufficient accuracy
since the actual fiber length distribution has been demonstrated
to exert only a limited effect on the predicted composite proper-
ties [8].

Direct application of the orientation averaging technique in
the case of non-linear response of the composite is complicated
by the necessity of determining the UC response under complex
loadings, which is usually done numerically [9,10]. As an alterna-
tive, the analytical relations developed in [11] for active loading
of an inelastic anisotropic material can be applied. Then only a
limited number of model parameters have to be determined for
the UC to predict its response under arbitrary complex loading,
thus simplifying considerably the averaging procedure stipulated
by Eq. (1).

In the current study, we apply the orientation averaging meth-
od to predicting of the non-linear deformation of short-flax-fiber-
reinforced polypropylene composites in tension. The analytical
model proposed in [11] is used to describe the deformation of a
UC, consisting of a fiber embedded in the polymer matrix, in active
combined loading, to be averaged according to Eq. (1). The model
parameters are determined using deformation diagrams of the
UC under simple loading modes obtained by means of FEM
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simulations. The effect of imperfect adhesion of the fibers on the
non-linear deformation of the composite is considered.

2. Unit cell model

In the following, we briefly present an analytical model for
description of the non-linear deformation of an anisotropic com-
posite material in complex active loading, elaborated in [11]. Fur-
ther, in Section 2.2, we provide the procedure of evaluation of
the model parameters of a UC of the short-flax-fiber composite
based on deformation diagrams of the UC in simple loading modes.
The latter are obtained by using the FEM model of UC described in
Section 2.3.

2.1. Analytical description of deformation of the unit cell

For description of the nonlinear behavior of a composite UC, the
geometry of which is given in Section 2.3, we use the form pro-
posed in [11]:

eij ¼ aijklrkl
1
kp

tanðkpÞ ð2Þ

where aijkl is the compliance tensor and k is a numerical constant.
The scalar function p is defined as:

p ¼ pðrÞ ¼ hðrÞðbijklrijrklÞ
1
2 ð3Þ

Here, bijkl designates a fourth-rank tensor with the following sym-
metries bijkl ¼ bjikl ¼ bijlk ¼ bklij, and

h ¼ hðrÞ ¼ 1þ c1x
1þ c2jxj

ð4Þ

with the auxiliary parameter x given by:

x ¼ ðaikajmalnrijrklrmnÞ
1
3

ðaikajlrijrklÞ
1
2

ð5Þ

where aij are defined as aij ¼ aijmm, and the parameters c1 and c2 are
such that c1x > �1; c2 P 0.

Solving Eq. (2) for stresses, one obtains [11]:

rij ¼ Aijklekl
1

kP
arctanðkPÞ ð6Þ

where Aijkl is the stiffness tensor,

P ¼ PðeÞ ¼ HðeÞðBijkleijeklÞ
1
2

with Bijkl ¼ AijmnbmnopAopkl and HðeÞ ¼ hðAijkleklÞ ¼ hðrÞ.
Thus the non-linear deformability of the UC is characterized, in

the general case, by five independent components of the tensor bijkl

and three scalar parameters k, c1 and c2.

2.2. Parameter estimation

We focus here only on the UC model parameters characteriz-
ing the non-linear deformation, since the elastic properties of the
UC can be evaluated separately, by analytical or numerical mod-
els [3,5]. Therefore its compliance tensor aijkl is considered as
known. The UC is assumed to be transversely isotropic, with
the longitudinal principal axis along the fiber direction desig-
nated by 1.

In the case of linear elastic response of the UC in the longitudi-
nal direction (i.e. fiber direction), the method of parameter estima-
tion proposed in [11] can be used. It employs three stress–strain
diagrams of the UD composite: in transverse tension and compres-

sion, e22ðr22Þ, and pure shear, e12ðr12Þ, and the model parameters
are obtained as the values providing the best fit of analytical rela-
tion Eq. (2) to the diagrams.

If the behavior of a composite material is nonlinear also in the
longitudinal direction, more input data are needed. In addition to
the three loading cases mentioned above, we also selected the axial
tension e11ðr11Þ, shear e23ðr23Þ and equi-biaxial tension
e22ðr11;r22Þ with r11 ¼ r22 ¼ r. The deformation diagrams men-
tioned are to be obtained by the FEM, using the UC model de-
scribed in Section 2.3.

Since the tensor bijkl is defined with accuracy up to a multiplica-
tive constant, we are free to arbitrarily select the value of one of its
components. Here we assign b1212 ¼ 1 GPa�1, as suggested in [11].
Then the value of k can be determined by approximation of the
shear response curve e12ðr12Þ by Eq. (2). Under pure shear, Eq.
(5) yields x = 0, and hence h ¼ 1 according to Eq. (4), therefore
Eq. (2) reads:

e12 ¼ a1212r12
1

k
ffiffiffiffiffiffiffiffiffiffiffi
b1212

p
jr12j

tanð2k
ffiffiffiffiffiffiffiffiffiffiffi
b1212

p
jr12jÞ ð7Þ

Similarly, b2323 is determined by approximation of the curve e23ðr23Þ
by Eq. (2), which reads in this case:

e23 ¼ a2323r23
1

k
ffiffiffiffiffiffiffiffiffiffiffi
b2323

p
jr23j

tanð2k
ffiffiffiffiffiffiffiffiffiffiffi
b2323

p
jr23jÞ ð8Þ

The value of x is close to unity for equbiaxial tension; allowing
for that, the remaining parameters and tensor bijkl components are
determined assuming x ¼ 1 for equi-biaxial tension. It is straight-
forward to check that h takes the same, constant, value for the axial
longitudinal e11ðr11Þ, transverse e22ðr22Þ, and equi-biaxial
e22ðr11;r22Þ tension. Then the auxiliary parameters C1 ¼ h

ffiffiffiffiffiffiffiffiffiffiffi
b1111

p
and C2 ¼ h

ffiffiffiffiffiffiffiffiffiffiffi
b2222

p
are determined by approximation of the curves

e11ðr11Þ and e22ðr22Þ by Eq. (2). This provides the ratio of tensor
components

b2222

b1111
¼ C2

C1

� �2

ð9Þ

The parameter C3 ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1111 þ 2b1122 þ b2222

p
is determined by

approximation of the curve e22ðr11;r22Þ; the ratio of C3 and C1

yields

b1111 þ 2b1122 þ b2222

b1111
¼ C3

C1

� �2

ð10Þ

Eqs. (9) and (10), supplemented by the assumptions of linear vol-
ume variation with stress under hydrostatic loading [11]:

b1111 þ 2b2222 þ 4b1122 þ 2b2233 ¼ 0 ð11Þ

and transverse isotropy of the UC,

b2222 � b2233 ¼ 2b2323 ð12Þ

allow estimation of all the remaining components of the tensor bijkl

from the system of linear equations Eqs. (9)–(12). Then the value of
h in uniaxial tension, designated in the following as h

þ
, is also ob-

tained employing e.g. the auxiliary parameter C1.
To evaluate the parameters c1 and c2 entering Eq. (4), the trans-

verse compression diagram e22ðr22Þ is used. In this case, Eq. (2)
becomes:

e22 ¼ a2222
sgnðr22Þ

k h
� ffiffiffiffiffiffiffiffiffiffiffi

b2222

p tanðk h
� ffiffiffiffiffiffiffiffiffiffiffi

b2222

p
jr22jÞ ð13Þ

where h
�

designates the value of h in uniaxial compression.
Approximating the e22ðr22Þ diagram by Eq. (13), h

�
is determined.
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