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a b s t r a c t

A novel approach to the analysis of composite structure is introduced in this paper. One-dimensional (1D)
refined finite elements are formulated by making use of the Carrera Unified Formulation (CUF). CUF is a
higher-order 1D formulation which was recently introduced by the first author. By exploiting the hierar-
chical characteristics of CUF, a multi-line approach is developed straightforwardly and used for the anal-
ysis of multilayered structures. In the multi-line approach, each layer is modeled by one beam-line
discretization. Refined beam elements with different orders of expansion over the cross-sectional plane
are then employed along different beam-lines. The compatibility of displacements at the boundary inter-
faces between beam-lines is ensured by using Lagrange multipliers. The accuracy of the proposed method
is verified both through published literature and through finite element solutions using the commercial
code MSC/Nastran.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is devoted to the analysis of laminated composite
beams. The advantages of composite materials are well known
and the most relevant are: high strength-to-weight ratio, high stiff-
ness-to-weight ratio, ease of formability, wide range of operating
temperatures, and their capability to be tailored according to a gi-
ven requirement (see the book by Tsai [1]). One of the main issues
related to the proper modeling of a composite structure is related
to its low transverse shear moduli compared to the axial tensile
moduli, as discussed in the excellent review of Kapania and Raciti
[2,3] which includes a comprehensive overview on composite
beam works. Moreover, the characterization of anisotropic layered
composite structures requires models able to reproduce piecewise
continuous displacement and transverse stress fields in the thick-
ness direction. These two effects, summarized as C0

z requirements
in [4], are not automatically satisfied by those models that were
originally devoted to the analysis of single-layered structures, such
as the classical beam theories by Euler [5] (hereinafter referred to
as EBBM) and Timoshenko [6] (hereinafter referred to as TBM).

A great deal of literature exists on classical and refined beam
theories for the analysis of multilayered composite structures. A
brief, though not exhaustive review, is given hereafter. Reddy [7]

presented a plate theory which provides a parabolic distribution
of the transverse shear strains ensuring that the transverse shear
stresses are null on the top and bottom surfaces. By using this
model, exact closed-form solutions for static analyses of cross-
ply laminated beams with arbitrary boundary conditions were pre-
sented in [8]. In [9], Surana and Nguyen presented an interesting
two-dimensional hierarchical curved beam element. In Matsuna-
ga’s paper [10], the displacement components were expanded into
power series of the z-thickness coordinate. Mantari et al. [11] ex-
pressed the displacement components of laminated plates by
adopting a combination of exponential and trigonometric func-
tions. Recently, Vidal et al. [12] proposed the approximation of
the displacement field as a sum of separated functions of axial
and transverse coordinates by adopting the Proper Generalized
Decomposition procedure.

All the aforementioned theories are based on the Equivalent
Single layer (ESL) approach and, although the results agree very
well with the three-dimensional solutions for several structural
problems, the main drawback is the continuity of shear strains at
interfaces (hence the discontinuity of the shear stresses if they
are computed through the constitutive equations). To overcome
this shortcoming, many researchers have adopted the Layer-wise
(LW) approach and a few examples are given here. Shimpi and
Ghugal [13] presents a new Layer-wise (LW) trigonometric model
for two-layered cross-ply beams. The main feature of this theory is
that the shear stresses are derived directly from the constitutive
equations satisfying both the shear-stress-free condition at the free
surfaces of the beam and the condition of continuity of the shear
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stresses at the interface. On the same topic, Tahani [14] proposes
two theories to analyze the static and dynamic behavior of the
laminated beams. Unfortunately, when the number of layers in-
creases, the LW approach becomes unfavorable because it is too
expensive in terms of computational cost. To overcome this prob-
lem, many researchers have introduced layer independent theories
in which zig-zag or Heaviside’s functions are used.

Murakami [15] was the first to introduce a zig-zag function into
Reissner’s new mixed variational principle to develop a plate the-
ory (for a comprehensive review of Murakami’s zig-zag method,
see Carrera [16]). Vidal and Polit [17] presented a refined sine mod-
el by exploiting a Heaviside function for each layer to satisfy the
continuity conditions for both displacements and transverse shear
stress and the free conditions of the upper and lower surfaces. An
extensive investigation about the use of various cross-sectional
functions for the analysis of laminated beams has recently been
proposed in [18], where polynomial, trigonometric, exponential,
as well as any combination of these functions were used.

It is clear that many attempts have been made in order to pro-
vide a general and reliable theory able to capture every aspect of
the complex nature of composite materials. In the present paper,
a new method for the analysis of laminated composite structures
is proposed. This method, which is called Multi-Line (ML), repre-
sents a step forward from the classical ESL and LW approaches.
ML models have recently been introduced by Carrera and Pagani
[19] and used for the analysis of thin-walled and reinforced struc-
tures. In the present paper ML approach is extended to the analysis
of composite structures. In a ML modeling approach for laminates,
each layer (or group of layers) of the structure is modeled by one
higher-order beam. Subsequently, higher-order beams are assem-
bled at the layer interfaces through Lagrange multipliers. In this
work, refined beam elements are formulated using the Carrera Uni-
fied Formulation (CUF). According to CUF, Taylor-like polynomials
are used on the cross-section of each beam to expand generalized
displacement variables in the neighborhood of the beam axis. CUF
was originally devoted to the analysis of plate and shell structures
[20] and recently it has been expanded to 1D theories by the first
author and his co-workers [21]. Several papers are available on
the analysis of composite structures via CUF models, see for exam-
ple [18,22–24].

In the next sections a brief overview on CUF and the ML ap-
proach is provided. Numerical results concerning laminated and
composite structures are then discussed. Finally, the main conclu-
sions are outlined.

2. Higher-order beam formulation

2.1. Preliminaries

The adopted rectangular cartesian coordinate system is shown
in Fig. 1, together with the geometry of a beam which can be con-
sidered as a single layer, a group of layers, as well as a whole mul-
tilayer. The cross-sectional plane of the structure is denoted by X,
and the beam boundaries over y are 0 6 y 6 l. Subscript k, which is
usually used to denote variables and parameters related to the kth

layer, is neglected in the following for the sake of simplicity. Let us
introduce the transposed displacement vector,

uðx; y; zÞ ¼ ux uy uzf gT ð1Þ

The stress, r, and strain, �, components are grouped as follows:

rp ¼ rzz rxx rzxf gT
; �p ¼ �zz �xx �zxf gT

rn ¼ rzy rxy ryyf gT
; �n ¼ �zy �xy �yyf gT

ð2Þ

In the case of small displacements with respect to a characteristic
dimension in the plane of X, the linear strain–displacement rela-
tions are used.

�p ¼ Dpu
�n ¼ Dnu ¼ ðDnX þ DnyÞu

ð3Þ

where Dp and Dn are linear differential operators and the subscript
‘‘n’’ stands for terms lying on the cross-section, while ‘‘p’’ stands for
terms lying on planes which are orthogonal to X.
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ð4Þ

Constitutive laws are now exploited to obtain stress components to
give

r ¼ eC� ð5Þ

Eq. (5) can be split into rp and rn with the help of Eq. (2) so that

rp ¼ eCpp�p þ eCpn�n

rn ¼ eCnp�p þ eCnn�n

ð6Þ

The matrices eCpp; eCnn; eCpn, and eCnp contains the material coefficients.
They can be found in [25] in the case of orthotropic material, which
is considered in this work.

Within the framework of CUF, the displacement field u(x,y,z)
can be expressed as

uðx; y; zÞ ¼ Fsðx; zÞusðyÞ; s ¼ 1;2; . . . :;M ð7Þ

where Fs are the functions of the coordinates x and z on the cross-
section. us is the vector of the generalized displacements, M stands
for the number of terms used in the expansion, and the repeated
subscript, s, indicates summation. The choice of Fs determines the
class of the 1D CUF model that is required and subsequently to be
adopted. TE (Taylor expansion) 1D CUF models – described by Eq.
(7) – consists of a Maclaurin series that uses the 2D polynomials
xizj as base, where i and j are positive integers. For instance, the
displacement field of the second-order (N = 2) TE model can be
expressed as

ux ¼ ux1 þ x ux2 þ z ux3 þ x2 ux4 þ xz ux5 þ z2 ux6

uy ¼ uy1
þ x uy2

þ z uy3
þ x2 uy4

þ xz uy5
þ z2 uy6

uz ¼ uz1 þ x uz2 þ z uz3 þ x2 uz4 þ xz uz5 þ z2 uz6

ð8Þ

The order N of the expansion is set as an input option of the analysis;
the integer N is arbitrary and defines the order of the beam theory.
The Timoshenko beam model (TBM) can be realized by using a suit-
able Fs expansion. Two conditions have to be imposed: (1) a first-or-
der (N = 1) approximation kinematic field and (2) the displacement
components ux and uz have to be constant above the cross-section.
By contrast, the Euler–Bernoulli beam model (EBBM) can be ob-
tained through the penalization of �xy and �zy. Classical theories
and first-order models (N = 1) require the necessary assumption of
reduced material stiffness coefficients to correct Poisson’s locking
(see [26]). In this paper, Poisson’s locking is corrected according to

y

x

z

L

Fig. 1. Coordinate frame of the beam model.
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