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a b s t r a c t

Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have

been recently proposed as an alternative to energy loss and time of flight methods. However this

technique requires a large amount of memory for storing the shapes of charge and current signals.

We have implemented a hardware solution for fast on-line processing of the signals producing the

relevant information needed for particle identification. Since the pulse shape analysis can be

formulated in terms of a pattern recognition problem, a neural network has been implemented in a

FPGA device. The design concept has been tested using 12,13C ions produced in heavy ion reactions. The

actual latency of the system is about 20 ms when using a clock frequency of 50 MHz.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Radioactive beam facilities provide a unique tool to investigate
nuclear structure and dynamics by exploring the isospin degree of
freedom. There are several new facilities foreseen to be operative
in the near future, like SPIRAL2 at GANIL (France), FAIR at GSI
(Germany) or SPES at LNL (Italy). They will accelerate radioactive
nuclear beams with large intensities allowing for the study of
short-lived nuclei not presently available. These studies demand
very powerful detection systems, including full identification of
reaction products over the largest dynamical range and with the
lowest possible thresholds.

The principle of operation of commonly used radiation detec-
tors is based on the conversion of the energy deposited by the
particles impinging in the detector into an electric signal. The
time dependence of the current (or charge) signals depends on
the (Z, N) values of the reaction fragments, mainly due to the
differences in the carrier density created along their path through
the detector bulk. This feature becomes the basis of pulse shape
analysis techniques (PSA) developed for particle identification
systems [1–5]. The process of identification of the shape of the
signal produced by charged particles in the detectors is actually a
pattern recognition problem. The basis of pattern recognition has

been extensively studied in the last twenty years. One of the most
popular classes of algorithms is the so-called ‘‘artificial neural
network’’ (ANN) [6,7].

When the experimental scenario makes PSA identification
mandatory, an off-line analysis procedure can be implemented
after storing the shapes in a convenient digital media. Typical
pulses can be as large as 200 ns for heavy fragments, and good
results have been obtained with a 125 MHz sampling rate [8].
However, when experimental rates approach the kHz level per
detector, fast data transfer and large storage memory devices are
required. On the other hand, digital signal processing algorithms
have become more powerful while advances in modern inte-
grated-circuit technology provide compact, efficient ways of
implementation. The degree of development achieved presently
by modern digital technologies makes them quite attractive for
applications in nuclear physics detectors, where good timing and
energy performances are simultaneously demanded. In particular,
an on-line hardware solution providing fast PSA analysis will
drastically reduce the size and complexity of the system.

The use of modern FPGAs and microprocessors allows the
development of a data processing system that can be easily
adapted to the particular needs of the experiment. In addition,
the FPGA architecture is particularly suitable for the ANN imple-
mentation that is described in this work. For the purpose of the
present work, we have chosen a simple FPGA device model
Spartan 3AN700 [9], taking advantage of its low cost and high
configurability; our main purpose is to test the viability of the

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/nima

Nuclear Instruments and Methods in
Physics Research A

0168-9002/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

doi:10.1016/j.nima.2012.01.034

n Corresponding author.

E-mail address: naharro@uhu.es (R. Jiménez).
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design concept. The FPGA option in fact provides the flexibility
needed to test and optimize different ANN architectures and
characteristics. Another important advantage of FPGA devices is
their relative radiation hardness as compared to microprocessors
or other programmable devices, so they could be more suitable
for designing a dedicated Front End Electronics (FEE) for particle
detectors systems needed in nuclear physics spectroscopy.

Here we report on a prototype of front-end electronics capable
of performing PSA analysis of energetic heavy ions (�10 MeV/u)
impinging on surface-barrier silicon detectors. The paper is
organized as follows: In Section 2 we present general system
requirements and the methodology used in our studies. In Section
3 we treat the main blocks of the ANNs employed for particle
identification. In Section 4 we discuss the specific details of FPGA
programming and the application to 12,13C identification. Finally,
the conclusions of our work are summarized in Section 5.

2. Requirements and methodology

The typical architecture of a data acquisition system for a
particle detector is shown in Fig. 1. The detector, which may be
well a pixel or strip detector, acts as a capacitor collecting the
charge produced by the impinging particles until they stop in the
bulk of the material. The PSA technique uses the time distribution
(‘‘shape’’ from now on) of the charge collection (current signal) to
extract the relevant parameters needed to identify the impinging
ion. Although different radiation sensitive materials will produce
different amplitudes, in general terms charge deposition per unit
time is small and should be amplified in order to record the shape
of the physical event. This process is carried out by the combina-
tion of a wide-band preamplifier (�300 MHz) and a digital
system. Finally, a digital pre-processing is performed to classify
and analyze the pattern before transferring the identification
information to the data storage unit. This is the so-called ‘‘pulse
shape analysis’’ technique.

While in the commonly used off-line analysis each complete
event must be processed, our approach is intrinsically parallel and
the segmentation of the detector can be efficiently exploited for a
parallel partial analysis of the entire event. In this scenario, a
multiplexing scheme must be implemented in the FPGA to handle
the data flow toward the output device (storage or subsequent
stages of the data acquisition chain) as schematically shown in
Fig. 1. Therefore, when dealing with a particle impact-rate around
a few kHz, the bottleneck will be in the communication with the
output device and not in the on-line analysis process. Multiple hit
events are not considered at present configuration but can be
easily implemented.

In our design, the digitized signal shapes coming from the
detector are fed serially to the ANN, along with a protocol signal
indicating that the sample is valid.

One of the main features of neural networks is their learning
ability. In particular, in this work we use a Multilayer Perceptron
neural network (MLP). The training stage is performed off-line,
where a set of real numbers (weights) are provided to each

neuron. This process must be carried out using realistic signal
shapes of heavy ions. We have implemented a network with two
neuron output layer, which seems to be sufficient to classify a
wide range of heavy ion shapes, as it is discussed in Section 4.
However, the designed MLP is fully reconfigurable in its archi-
tecture (number of neurons and their distribution in layers), the
number and size of input data, so that it can be adapted to the
different experimental conditions.

The high flexibility of the FPGA architecture in fact allows us to
describe a generic fully configurable MLP using a VHDL code
(VHSIC Hardware Description Language). The configuration data
are the architecture of the MLP and its data size (numerical
format). In the process of network training, which can be
accomplished using typical heavy ion pulse shapes in the reac-
tions under study, the performances of different architectures
involving various combinations of layers and neurons are tested
to determine the optimal configuration and the corresponding
weights. This task is performed off-line with a software tool, such
as Matlab.

The numerical format will be determined by weight values and
by the resolution of ADC, considering a fixed-point arithmetic.
The size of the integer part is determined by the weights, whereas
the size of the decimal part is determined by the resolution of the
ADC. If the experimental conditions impose a change of the
configuration data, a new implementation of the system (hard-
ware) has to be built. However, a change of the weights would
only require a reprogramming of the device.

3. Implementation of the neural network

One of the advantages of a neural network is its high degree of
parallelism, but this mode of operation requires large hardware
resources and FPGA devices are usually very limited. Therefore,
most of the implementations of MLP’s in FPGA’s are performed
serially. In this case a single neuron must perform as many
iterations as the number of neurons composing the full MLP. For
an optimal use of the FPGA hardware implementation resources,
however, one can implement in a single device several MLP’s with
a larger number of dedicated neurons. In this case, the number of
iterations is given by the ratio between the neurons in the MLP
and total number of neurons implemented. The basic structure of
this implementation is shown in Fig. 2.

The input shift register stores the input data. These and the
weights (previously stored in a memory) are fed to the neurons to
perform the MLP operation. The output of ANN neurons is handled
by a dedicated output shift register. The group of operations
performed by each component is driven by the controller.

3.1. Input shift register

The input stage consists of two shift register. The first register
stores the input data, and the second register loads the temporary
data produced by the neurons at each layer. The output port must
be connected to each register depending on the layer currently in
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Fig. 1. Block diagram of a typical electronic chain for PSA. The signal from detector is amplified for a charge sensitive amplifier, then is converted into bits by an ADC, and

finally digitally processed.
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