

Available online at www.sciencedirect.com

Nuclear Data Sheets

Nuclear Data Sheets 148 (2018) 383-419

www.elsevier.com/locate/nds

Evaluation of Neutron-induced Cross Sections and their Related Covariances with **Physical Constraints**

C. De Saint Jean,^{1,*} P. Archier,¹ E. Privas,¹ G. Noguère,¹ B. Habert,¹ and P. Tamagno¹

¹CEA, DEN, Cadarache, F-13108 Saint Paul les Durance, France

(Received 21 July 2017; revised received 16 October and 10 November 2017; accepted 2 December 2017)

Nuclear data, along with numerical methods and the associated calculation schemes, continue to play a key role in reactor design, reactor core operating parameters calculations, fuel cycle management and criticality safety calculations. Due to the intensive use of Monte-Carlo calculations reducing numerical biases, the final accuracy of neutronic calculations increasingly depends on the quality of nuclear data used. This paper gives a broad picture of all ingredients treated by nuclear data evaluators during their analyses. After giving an introduction to nuclear data evaluation, we present implications of using the Bayesian inference to obtain evaluated cross sections and related uncertainties. In particular, a focus is made on systematic uncertainties appearing in the analysis of differential measurements as well as advantages and drawbacks one may encounter by analyzing integral experiments.

The evaluation work is in general done independently in the resonance and in the continuum energy ranges giving rise to inconsistencies in evaluated files. For future evaluations on the whole energy range, we call attention to two innovative methods used to analyze several nuclear reaction models and impose constraints. Finally, we discuss suggestions for possible improvements in the evaluation process to master the quantification of uncertainties. These are associated with experiments (microscopic and integral), nuclear reaction theories and the Bayesian inference.

	CONTENTS	
I.	INTRODUCTION	384
II.	BASICS OF NUCLEAR DATA	
	EVALUATION	385
	A. Nuclear Data for Reactor Physics	385
	B. Nuclear Reaction Models	386
	1. The Collision Matrix	386
	2. Resolved Resonance Range	387
	3. From the Unresolved Resonance Range	
	to Continuum	387
	4. Conclusion	390
	C. Microscopic and Integral Experiments	391
	1. Microscopic Measurements Based on the	Э
	Time-of-Flight Technique	391
	2. Integral Measurements	393
	D. Conclusions	394
		004
111.	THERY OF PARAMETER ESTIMATION	394
	A. Bayesian Inference	394
	B. Deterministic Theory	394
	1. Basic Assumptions	394
	2. Numerical Issues	395

* Corresponding author: cyrille.de-saint-jean@cea.fr

	3. Listed Approximations	395
	C. Bayesian Monte-Carlo	395
	1. Classical Bayesian Monte-Carlo	396
	2. Importance Sampling	396
	3. Markov Chain Monte-Carlo	397
	D. Intermediate Conclusions	397
	E. Uncertainties and the Related Strategy	397
IV.	MICROSCOPIC EXPERIMENTS AND	
	SYSTEMATIC UNCERTAINTIES	398
	A. Systematic Uncertainty Puzzle	398
	B. Theory: Bayesian Marginalization	399
	1. Monte-Carlo Solutions	399
	2. Description of an Analytical Method	400
	3. Validation	400
	C. Example of Uncertainty Evaluation for	
	²³⁹ Pu Cross Sections	401
	1. Resonance Shape Analysis in the	
	Thermal and Resonance Range	401
	2. High Energy Range	401
	3. Covariance Matrices: Results	401
	D. Conclusion of Systematic Uncertainties	
	Effects	402
V.	INTEGRAL EXPRIMENT ISSUES AND	
	SOLUTIONS	402
	A. General Description	402

B. Reminder of Traditional Multigroup Cross

	Section Adjustment	403
	D. 239 Pu Covariance Evaluation with Integral	404
	Experiments	404
	1 Integral Data Assimilation of IEZEBEL	
	1. Integral Data Assimilation of \mathcal{PD}	404
	2. Integral Data Assimilation of ThOTH. σ_c Uncertainty Reduction for ²³⁹ Pu	406
	E. Conclusions for Integral Data	107
	Assimilation	407
VI.	CONSTRAINTS ON NUCLEAR REACTION	
	MODELS	408
	A. General Description of the Problem	408
	B. Experimental Constraints on Several	
	Nuclear Reaction Models	409
	1. Microscopic Experiments with	
	Systematic Uncertainties	409
	2. Description of the 23 Na Example	409
	C. Physical Constraints on Several Nuclear	
	Reaction Models	410
	1. Lagrange Multipliers Mathematical	
	Description	410
	2. Application with Nuclear Reaction	
	Models	411
	D. Conclusion	411
VII.	PERSPECTIVES	412
	A. Perspectives and Progress in Physics	412
	1. Progress in Theoretical Physics	412
	2. Parameter Constraints on Several	
	Nuclear Reaction Models	412
	3. Perspectives and Progress in	
	Experiments	413
	B. Perspectives and Progress in the Bayesian	
	Inference	413
	1. Perspective with Monte-Carlo Data	
	Assimilation	413
	2. Transposition Theory	414
	3. Nuclear Reaction Model Prior	
	Uncertainties	414
	4. Application of this Work to other	
	Nuclear Data	414
VIII		
VIII.	CENEDAL CONCLUSIONS AND	
,	GENERAL CONCLUSIONS AND	111
,	GENERAL CONCLUSIONS AND COMMENTS	414
,	GENERAL CONCLUSIONS AND COMMENTS	414 415
,	GENERAL CONCLUSIONS AND COMMENTS Acknowledgments	414 415

I. INTRODUCTION

Since the birth of nuclear physics, nuclear data activities have always been paramount: in the early years (from 1920-1945), the theoretical and experimental advances were related to the necessity of controlling atomic energy by building devices where reaction chain would be quantified (calculated) and mastered. This corresponds to what Emilio Segrè called having "good numbers."¹ Having "good numbers" was already associated at that time with the need to develop theoretical approaches (nuclear reaction models and fission theories), initiate the measurement of fundamental physical observables through microscopic experiments and quickly set up integral experiments (critical mass program of Los Alamos). These three activities still characterize the nuclear data evaluation (to have good numbers).

Nuclear data continue to play a key role, as well as numerical methods and the associated calculation schemes in reactor design, reactor core operating parameters calculations, fuel cycle management and criticality safety calculations (see Ref. [1] for example). This paper will focus on the nuclear data that are used in reactor physics applications and especially neutron cross sections evaluation. Even if the evaluation of thermal scattering data [2, 3], light elements neutron-induced cross sections, fission yields [4, 5], delayed particles (neutrons/gammas) are not presented in this paper, some presented issues are common and the discussed methods to solve them could be used.

Due to the intensive use of Monte-Carlo calculations reducing numerical biases, the final accuracy of neutronic calculations increasingly depends on the quality of nuclear data [1, 6]. The knowledge of neutron-induced cross sections in the 0 eV and 200 MeV energy region is reflected by the evaluation of their related uncertainties.

In Sec. II, a brief reminder of the nuclear data needed to calculate properly the neutron flux in a nuclear reactor core will be given. Then, major ingredients of the evaluation work, theoretical models (common theoretical description of major nuclear reaction models and some of their parameters), microscopic and integral measurements, will be presented. As this paper presents the evaluation of nuclear data based on the Bayesian inference, a general mathematical framework related to Bayesian parameters estimations will be first presented in Sec. III. Secs. II and III can be viewed as introductory chapters to present a simplified state of the art of evaluation and possible principal challenges and drawbacks.

Sec. IV will present one of the major issues when analyzing microscopic experiments: proper propagation of systematic uncertainties (normalization, background, ...). In the past, unrealistically low parameter uncertainties were obtained at the end of evaluation by not treating them accurately. Thus, in Sec. IV B, methodologies to treat systematic experimental uncertainty (referred to as marginalization technique) will be presented. In Sec. V, the use of integral experiments during the evaluation process will be presented and discussed. Compar-

 [&]quot;In an enterprise such as the building of the atomic bomb the difference between ideas, hopes, suggestions and theoretical calculations, and solid numbers based on measurement, is paramount."
E. Segrè

Download English Version:

https://daneshyari.com/en/article/8182292

Download Persian Version:

https://daneshyari.com/article/8182292

Daneshyari.com