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Nuclear data, along with numerical methods and the associated calculation schemes, continue
to play a key role in reactor design, reactor core operating parameters calculations, fuel cycle
management and criticality safety calculations. Due to the intensive use of Monte-Carlo calculations
reducing numerical biases, the final accuracy of neutronic calculations increasingly depends on the
quality of nuclear data used. This paper gives a broad picture of all ingredients treated by nuclear
data evaluators during their analyses. After giving an introduction to nuclear data evaluation, we
present implications of using the Bayesian inference to obtain evaluated cross sections and related
uncertainties. In particular, a focus is made on systematic uncertainties appearing in the analysis
of differential measurements as well as advantages and drawbacks one may encounter by analyzing
integral experiments.

The evaluation work is in general done independently in the resonance and in the continuum
energy ranges giving rise to inconsistencies in evaluated files. For future evaluations on the whole
energy range, we call attention to two innovative methods used to analyze several nuclear reaction
models and impose constraints. Finally, we discuss suggestions for possible improvements in the
evaluation process to master the quantification of uncertainties. These are associated with experi-
ments (microscopic and integral), nuclear reaction theories and the Bayesian inference.
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I. INTRODUCTION

Since the birth of nuclear physics, nuclear data activi-
ties have always been paramount: in the early years (from
1920-1945), the theoretical and experimental advances
were related to the necessity of controlling atomic energy
by building devices where reaction chain would be quan-

tified (calculated) and mastered. This corresponds to
what Emilio Segrè called having “good numbers.”1 Hav-
ing “good numbers” was already associated at that time
with the need to develop theoretical approaches (nuclear
reaction models and fission theories), initiate the mea-
surement of fundamental physical observables through
microscopic experiments and quickly set up integral ex-
periments (critical mass program of Los Alamos). These
three activities still characterize the nuclear data evalua-
tion (to have good numbers).
Nuclear data continue to play a key role, as well as nu-

merical methods and the associated calculation schemes
in reactor design, reactor core operating parameters cal-
culations, fuel cycle management and criticality safety
calculations (see Ref. [1] for example). This paper will
focus on the nuclear data that are used in reactor physics
applications and especially neutron cross sections eval-
uation. Even if the evaluation of thermal scattering
data [2, 3], light elements neutron-induced cross sections,
fission yields [4, 5], delayed particles (neutrons/gammas)
are not presented in this paper, some presented issues are
common and the discussed methods to solve them could
be used.
Due to the intensive use of Monte-Carlo calculations re-

ducing numerical biases, the final accuracy of neutronic
calculations increasingly depends on the quality of nu-
clear data [1, 6]. The knowledge of neutron-induced cross
sections in the 0 eV and 200 MeV energy region is re-
flected by the evaluation of their related uncertainties.
In Sec. II, a brief reminder of the nuclear data needed

to calculate properly the neutron flux in a nuclear reac-
tor core will be given. Then, major ingredients of the
evaluation work, theoretical models (common theoretical
description of major nuclear reaction models and some
of their parameters), microscopic and integral measure-
ments, will be presented. As this paper presents the eval-
uation of nuclear data based on the Bayesian inference, a
general mathematical framework related to Bayesian pa-
rameters estimations will be first presented in Sec. III.
Secs. II and III can be viewed as introductory chapters
to present a simplified state of the art of evaluation and
possible principal challenges and drawbacks.
Sec. IV will present one of the major issues when

analyzing microscopic experiments: proper propagation
of systematic uncertainties (normalization, background,
. . . ). In the past, unrealistically low parameter uncer-
tainties were obtained at the end of evaluation by not
treating them accurately. Thus, in Sec. IVB, method-
ologies to treat systematic experimental uncertainty (re-
ferred to as marginalization technique) will be presented.
In Sec. V, the use of integral experiments during the eval-
uation process will be presented and discussed. Compar-

1 “In an enterprise such as the building of the atomic bomb the dif-
ference between ideas, hopes, suggestions and theoretical calcula-
tions, and solid numbers based on measurement, is paramount.”
E. Segrè
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