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Abstract

We compare two order parameters for the deconfinement transition, induced by thermal and density effects, com-
monly used in the literature, namely the thermal and density evolution of the continuum threshold s0, within the frame
of the QCD sum rules, and the trace of the Polyakov loop Φ in the framework of a nonlocal S U(2) chiral quark
model. We include in our discussion the evolution of the chiral quark condensate, the parameter that characterizes the
chiral symmetry restoration. We found that essentially both order parameters, s0 and Φ, provide the same information
for the deconfinement transition, both for the zero and finite chemical potential cases. At zero density, the critical
temperatures in both cases coincide exactly and, in the case of finite baryonic chemical potential μ, we find evidence
for the appearance of a quarkyonic phase.
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1. Introduction

In QCD, when quarks are placed in a medium, the
color charge is screened due to density and tempera-
ture effects [1]. If the density and/or the temperature in-
creases beyond a certain critical value, one expects that
the interactions between quarks will not be able to con-
fine them inside a hadron, so that they are free to travel
longer distances and deconfine. This transition from a
confined to a deconfined phase is usually referred to as
the deconfinement phase transition.

A separate phase transition is the realization of chi-
ral symmetry, moving from a Nambu-Goldstone phase
into a Wigner-Weyl phase. Based, on lattice QCD evi-
dence [2] one expects these two phase transitions to take
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place at approximately the same temperature at zero
chemical potential. At finite density these two transi-
tions can arise at different critical temperatures. The
result will be a quarkyonic phase, where the chiral sym-
metry is restored but the quarks and gluons remain con-
fined.

It has been customary to study the behavior of the
trace of the Polyakov loop (PL) Φ(T, μ) (order parame-
ter for deconfinement phase transition) and quark anti-
quark chiral condensate 〈ψ̄ψ〉(T, μ) (chiral symmetry
restoration), as function of temperature and chemical
potential.

The goal of our discussion is to compare the Polyakov
loop order parameter with a QCD deconfinement pa-
rameter [3], that corresponds to the squared energy
threshold, s0(T, μ), for the onset of perturbative QCD
(PQCD) in hadronic spectral functions. For an actual
general review see Ref. [4]. Around this energy, and
at zero temperature, the resonance peaks in the spec-
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trum dissapear or become very broad, approaching then
the PQCD regime. With increasing temperature ap-
proaching the critical temperature for deconfinement,
the spectral function should then be described entirely
by PQCD.

When both T and μ are nonzero, lattice QCD simu-
lations cannot be used, because of the sign problem in
the fermionic determinant. Therefore, one need to re-
sort either to mathematical constructions to overcome
the above limitation, or to model calculations.

The two deconfinement order parameters mentioned
before: Φ(T, μ) and s0(T, μ) can be used to realize a phe-
nomenological description of the deconfinement transi-
tion at finite temperature and density.

The natural framework to determine s0 has been that
of QCD sum rules. This framework is based on the op-
erator product expansion (OPE) of current correlators
at short distances, extended beyond perturbation theory,
and on Cauchy’s theorem in the complex s-plane. The
latter is usually referred to as quark-hadron duality. Vac-
uum expectation values of quark and gluon field oper-
ators effectively parametrize the effects of confinement.
An extension of this method to finite temperature was
first outlined in [3].

To analyze the role of the PL, we will concentrate
on nonlocal Polyakov−Nambu−Jona-Lasinio (nlPNJL)
models (see [5, 6] and references therein), in which
quarks move in a background color field and inter-
act through covariant nonlocal chirally symmetric four
point couplings. These approaches, offer a common
framework to study both the chiral restoration and de-
confinement transitions. In fact, the nonlocal character
of the interactions arises naturally in the context of sev-
eral successful approaches to low-energy quark dynam-
ics, and leads to a momentum dependence in the quark
propagator that can be made consistent [7] with lattice
results.

The aim of the present work is to study the relation
between both order parameters for the deconfinement
transition at finite temperature and chemical potential,
Φ and s0, using the thermal finite energy sum rules
(FESR) with inputs obtained from nlPNJL models.

2. Finite energy sum rules

We begin by considering the (charged) axial-vector
current correlator at T = 0

Πμν(q2) = i
∫

d4x eiq·x 〈0|T (Aμ(x)Aν(0))|0〉,
= −gμν Π1(q2) + qμqνΠ0(q2) , (1)

where Aμ(x) = : ū(x)γμγ5d(x) : is the axial-vector cur-
rent, qμ = (ω, �q) is the four-momentum transfer, and
the functions Π0,1(q2) are free of kinematical singulari-
ties. Concentrating on the function Π0(q2) and writing
the OPE beyond perturbation theory in QCD , one of the
two pillars of the sum rule method, one has

Π0(q2)|QCD = C0 Î +
∑
N=1

C2N(q2, μ2)〈Ô2N(μ2)〉 , (2)

where μ2 is a renormalization scale. The Wilson coef-
ficients CN depend on the Lorentz indices and quantum
numbers of the currents. Finally, the local gauge invari-
ant operators ÔN , are built from the quark and gluon
fields in the QCD Lagrangian. The vacuum expectation
values of those operators (Ô2N(μ2)), dubbed as conden-
sates, parametrize nonperturbative effects and have to be
extracted from experimental data or model calculations.

The second pillar of the QCD sum rules technique
is Cauchy’s theorem in the complex squared energy
s-plane and this allows us to establish the following
FESR. For details, we refer the reader to Ref. [4] and
to the original article Ref. [6]

(−)N−1C2N〈Ô2N〉 = 4π2
∫ s0

0
ds sN−1 1

π
ImΠ0(s)|HAD

− sN
0

N
[1 + O(αs)] (N = 1, 2, · · · ) . (3)

For N = 1, the dimension d = 2 term in the OPE
does not involve any condensate, as it is not possible to
construct a gauge invariant operator of such a dimen-
sion from the quark and gluon fields. There is no evi-
dence for such a term (at T = 0) from FESR analyses
of experimental data on e+e− annihilation and τ decays
into hadrons [8, 9]. At high temperatures, though, there
seems to be evidence for some d = 2 term [10]. How-
ever, the analysis to be reported here is performed at
lower values of T , so that we can safely ignore this con-
tribution in the sequel.

The dimension d = 4 term, a renormalization group
invariant quantity, is given by

C4〈Ô4〉 = π6 〈αsG2〉 + 2π2(mu + md)〈q̄q〉 . (4)

The extension of this program to finite temperature is
fairly straightforward [3, 11, 12], with the Wilson coef-
ficients in the OPE, Eq. (2), remaining independent of T
at leading order in αs, and the condensates developing a
temperature dependence.

In the static limit (�q → 0), to leading order in PQCD,
and for T � 0 and μ � 0 the function Π0(q2)|QCD in
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