Available online at www.sciencedirect.com

ScienceDirect

[Nuclear Physics A](https://doi.org/10.1016/j.nuclphysa.2018.02.010) ••• (••••) •••

z dzielnie i przez p
Został przez p ⁸ Fluctuations in non-ideal pion gas with dynamically ⁸ 9 and $C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ becomes the set of $\begin{bmatrix} 9 \\ 1 \end{bmatrix}$ \int_{10}^{9} fixed particle number

www.elsevier.com/locate/nuclphysa 3 3

 4×4 5 5 6 6

 \sim 11 \sim 11 ¹² E.E. Kolomeitsev^a, D.N. Voskresensky^b 13 13

14 14 ^a *Matej Bel University, Faculty of Natural Sciences, Tajovskeho 41, Banska Bystrica, SK-97401, Slovakia* 15 15 ^b *National Research Nuclear University (MEPhI), Kashirskoe shosse 31, 115409 Moscow, Russia*

¹⁶ 16 Received 24 October 2017; received in revised form 23 February 2018; accepted 25 February 2018 17 and 17

18 **18 and 20 and 20** 19 19

20 20 21 21 **Abstract**

22 22 We consider a non-ideal hot pion gas with the dynamically fixed number of particles in the model with 23 the $\lambda \phi^4$ interaction. The effective Lagrangian for the description of such a system is obtained after dropping 23 the terms responsible for the change of the total particle number. Reactions $\pi^+\pi^- \leftrightarrow \pi^0\pi^0$, which deter-₂₅ mine the isospin balance of the medium, are permitted. Within the self-consistent Hartree approximation ₂₅ 26 are computed in the critical point of the induced Bose–Einstein condensation when 26 particle number at temperatures above the critical point of the induced Bose–Einstein condensation when ²⁷ the pion chemical potential reaches the value of the effective pion mass. We analyze conditions for the con-²⁸ densate formation in the process of thermalization of an initially non-equilibrium pion gas. The normalized²⁸ ²⁹ variance of the particle number increases with a temperature decrease but remains finite in the critical point ²⁹ ³⁰ of the Bose–Einstein condensation. This is due to the non-perturbative account of the interaction and is in ³⁰ ³¹ contrast to the ideal-gas case. In the kinetic regime of the condensate formation the variance is shown to ³¹ 32 stay finite also. 33 we compute the effective pion mass, thermodynamic characteristics of the system and the variance of the

34 34

 37 38 38 зэрэг тогтоосоо нь тогтоосоо тогтоосоо тогтоосоо тогтоосоо тогтоосоо тогтоосоо тогтоосоо тогтоосоо тогтоосоо т
Видео нь тогтоосоо т 40 40 41 41 42 42 43 43

33 33 © 2018 Published by Elsevier B.V.

35 35 *Keywords:* Pion gas; Bose–Einstein condensation; Fluctuations 36 36

44 44 *E-mail address:* E.Kolomeitsev@gsi.de (E.E. Kolomeitsev).

45 45 <https://doi.org/10.1016/j.nuclphysa.2018.02.010> 46 46 0375-9474/© 2018 Published by Elsevier B.V.

Please cite this article in press as: E.E. Kolomeitsev, D.N. Voskresensky, Fluctuations in non-ideal pion gas with dynamically fixed particle number, Nucl. Phys. A (2018), https://doi.org/10.1016/j.nuclphysa.2018.02.010

JID:NUPHA AID:21176 /FLA [m1+; v1.280; Prn:28/02/2018; 13:31] P.2 (1-15)

2 *E.E. Kolomeitsev, D.N. Voskresensky / Nuclear Physics A* ••• *(*••••*)* •••*–*•••

ARTICI E IN PR

1 1 **1. Introduction**

2 2

³ Multitude of pions is produced in central ultra-relativistic nucleus–nucleus collisions at SPS, ³ 4 4 RHIC and LHC energies [\[1–5\]](#page--1-0). Because of the kinematical separation of the light meson 5 5 component or hadronization of quark–gluon plasma, a pion-enriched system can be formed at ⁶ midrapidity. Spectra of produced pions are approximately exponential at intermediate transverse ⁶ *7* momenta, $m_{\pi} \lesssim p_T \lesssim 7 m_{\pi}$, here and below $m_{\pi} = 139 \text{ MeV}$ is the pion mass, and $\hbar = c = 1$. ⁸ Therefore, one may assume that the pions stem from a hot fireball characterized by a temperature ⁸ $\mathcal{T}(\vec{r}, t)$ and density $n(\vec{r}, t)$, which expands until a thermal freeze-out, cf., e.g., the analysis [\[6\]](#page--1-0) per-
⁹ ¹⁰ formed for higher SPS energies. The fit of the particle yields to the data shows that even at LHC ¹⁰ 11 energies the temperature at the chemical freeze-out proves to be rather low, $T_{ch} \simeq 155 \text{ MeV}$ [\[7\]](#page--1-0). 11 ¹² The chemical non-equilibrium analysis of the LHC data on mean particle multiplicities [\[8\]](#page--1-0) shows ¹² that the temperature at the hadronization, $T_h \simeq T_{ch}$, might be even lower, 140–145 MeV. The ther-
¹³ 14 14 mal freeze-out temperature for hadrons is expected to be still lower, *T*th ∼ 100–120MeV as was 15 15 evaluated in [\[9–12\]](#page--1-0) for energies under consideration. Estimates [\[13\]](#page--1-0) show that at temperatures ¹⁶ $T \lesssim 130-140 \,\text{MeV}$, the rate of pion absorption becomes smaller than the rate of pion rescat-¹⁷ tering. This implies that the total pion number can be considered as dynamically fixed during ¹⁷ ¹⁸ the subsequent fireball expansion before the thermal freeze out [\[14\]](#page--1-0). The time scale of chemi-¹⁸ ¹⁹ cal equilibration for *T* \simeq 100–120 MeV, is estimated to be much longer, τ_{ch} ∼ 100 fm [\[15,10\]](#page--1-0) ¹⁹ 20 20 (these evaluations were performed for high SPS energies), than that of thermal equilibration, 21 τ_{th} ∼ few fm, and the typical time of the fireball expansion, τ_{exp} ∼ 10–20 fm [\[16,12\]](#page--1-0) for the ²¹ 22 22 collision energies under consideration.

23 At energies under consideration the measured p_T spectra show an enhancement at low trans-24 24 verse momenta, e.g. see [\[17\]](#page--1-0), which is attributed to a feed-down from resonance decays and a 25 25 non-zero value of the pion chemical potential. Already the first descriptions of pion spectra for 26 26 collisions at 200*A*GeV in the blast wave-model showed that the chemical potential of magnitude ²⁷ \sim 120–130 MeV is required [\[18–20\]](#page--1-0). The recent fit [\[21\]](#page--1-0) for collisions with $\sqrt{s_{NN}}$ = 2.76 TeV ²⁷ 28 obtained the chemical potential of pions $\mu \approx 134.9 \text{ MeV}$ that is just 80 keV below the mass of 28 ²⁹ the neutral pion. Such a proximity of the pion chemical potential to the critical value of the Bose–²⁹ ³⁰ Einstein condensation in the ideal gas inspires speculations that the Bose–Einstein condensate ³⁰ ³¹ (BEC) can be indeed formed in nucleus–nucleus collisions. Although it was demonstrated in [\[22\]](#page--1-0) ³¹ ³² that the chemical potential cannot reach the critical value in the course of the quasi-equilibrium ³² 33 33 isentropic fireball expansion, non-equilibrium overcooling effects [\[23–25\]](#page--1-0) may provide a mech-³⁴ anism to drive pions to the BEC. The condensation can also occur because of an additional injec-
³⁴ ³⁵ tion of non-equilibrium pions from resonance decays [\[26\]](#page--1-0), decomposition of a "blurred phase" ³⁵ ³⁶ of hot baryon-less matter [\[27\]](#page--1-0), sudden hadronization of supercooled quark–gluon plasma [\[28\]](#page--1-0) or ³⁶ ³⁷ a decay of the transient BEC of gluons or glueballs pre-formed at an initial stage in a heavy-ion ³⁷ 38 38 collision, cf. [\[29–33\]](#page--1-0). The ALICE collaboration reports a large coherent emission of pions from ³⁹ multi-pion correlation studies [\[34\]](#page--1-0). The fraction of coherent pions coming from this fit is as large ³⁹ ⁴⁰ as $23\% \pm 8\%$. The non-equilibrium parameters obtained in analysis require that about 5% of ⁴⁰ ⁴¹ pions are in the BEC [\[35\]](#page--1-0). For a discussion of a possibility of an occurrence of BEC in heavy-ion ⁴¹ 42 42 collisions at high energies with LHC detectors we cite recent review [\[36\]](#page--1-0).

⁴³ The presence of a phase transition (of the second or first order) implies an increase of fluc-⁴⁴ tuations near the critical point, as a general property manifested in various critical opalescence ⁴⁴ 45 phenomena, cf. [\[37\]](#page--1-0). The proximity of the system created in nucleus–nucleus collisions to the 45 ⁴⁶ Bose–Einstein condensation was argued in [\[38,41,35\]](#page--1-0) to reveal itself through a divergence of ⁴⁶ ⁴⁷ the normalized variance. The results were derived for an ideal pion gas in the thermodynami-

Download English Version:

<https://daneshyari.com/en/article/8182711>

Download Persian Version:

<https://daneshyari.com/article/8182711>

[Daneshyari.com](https://daneshyari.com)