

 45 <https://doi.org/10.1016/j.nuclphysa.2017.10.003> 46 0375-9474/© 2017 Elsevier B.V. All rights reserved.

47

Please cite this article in press as: F.F. Karpeshin, M.B. Trzhaskovskaya, Impact of the ionization of the atomic shell on the lifetime of the 229m Th isomer, Nucl. Phys. A (2017), https://doi.org/10.1016/j.nuclphysa.2017.10.003

2 *F.F. Karpeshin, M.B. Trzhaskovskaya / Nuclear Physics A* ••• *(*••••*)* •••*–*•••

¹ racy up to 10^{-19} – 10^{-21} [\[1,2\].](#page--1-0) For this purpose, more detailed information concerning the isomer ¹ 2 2 properties is still needed, including the exact value of the isomer energy and its half-life time.

³ Indirect evidence of the presence of the isomeric level is known for decades. However, nobody ³ ⁴ could detect the isomer or its decay directly. Only recently, its decay through internal conversion ⁴ 5 5 (IC) was finally discovered [\[3\].](#page--1-0) Nevertheless, information about characteristic properties of the ⁶ isomer, including its precise energy and lifetime, remains extremely scarce. Thus, the estimate ⁶ σ of its energy varies in time. An energy of 3.5 eV was considered for a long time [\[4\].](#page--1-0) Sometimes, ⁸ a value of 5.5 eV was also used [\[5\].](#page--1-0) Most recent measurements resulted in a higher value of ⁸ $9 \quad 7.6 \pm 0.5 \text{ eV}$ [\[6\].](#page--1-0) However, other values are also checked and cannot be excluded (e.g., [\[3,7\]](#page--1-0) and $9 \cdot$ 10 10 refs. cited therein). For the present purposes, we are oriented to this value as the latest data.

¹¹ Moreover, the isomer half-life was measured for the first time. Its value of 7 µs was obtained ¹¹ ¹² in neutral atoms [\[7\],](#page--1-0) in coincidence with the theoretical estimate [\[8\].](#page--1-0) In neutral atoms, the isomer ¹² 13 energy is higher than the ionization potential $I_a = 6.3 \text{ eV}$ [\[9\].](#page--1-0) Therefore, decay occurs via IC. ¹³ ¹⁴ Let us start with consideration of this basic process in more detail.

15 15

16 16 **2. Decay of the isomer through internal conversion in neutral atoms**

¹⁸ The decay width is described by **18** 18

$$
\Gamma = (1 + \alpha(M1))\Gamma_{\gamma}^{(n)},\tag{1}
$$

²¹ with *α*(*M*1) being the internal conversion coefficient (ICC), and $\Gamma_\gamma^{(n)}$ — the radiative nuclear $\frac{21}{22}$ width. Ground state electronic configuration is $(7s)^2 (6d_{3/2})^2$. With the calculated ICC value in $\frac{22}{23}$ 23 when Stroute state electronic comiguration is (15) $(w_3/2)$. While the calculated TCC value in 23 the 7s electronic shell, $\alpha(M1) = 1.1 \times 10^9$ [\[8\],](#page--1-0) Eq. (1) allows one to conclude on the radiative $\frac{24}{24}$ 25 musical natural 25 nuclear half-life to be $T_{1/2} \approx 2$ h.

26 It is didactic to trace how the estimation of the lifetime depends on the energy of the isomer. 27 Let us consider 115 . 2 m [0]. The recent calculations proportional to ω , where ω is the 27 transition energy. On the other hand, the nuclear radiative width $\Gamma_{\gamma}^{(n)}$ is proportional to $ω^3$. Thus 28 29 the expected lifetime, which is inversely proportional to ICC times $\Gamma_{\gamma}^{(n)}$, holds with respect to 29 30 30 variations of the supposed isomer energy. A change in the lifetime could be brought about by 31 31 switching-on the next 6*s* shell to IC. But onset of the 6*s* shell would occur only at 37 eV in 32 neutral atoms, and $56 \text{ eV} - \text{in}$ the singly charged ions. Currently such energies are not under 32 33 discussion. 33 Let us consider Fig. 2 in [\[8\].](#page--1-0) The ICC is exactly inversely proportional to ω^{-3} , where ω is the discussion.

34 In the ionized atoms of ²²⁹Th, IC becomes energetically closed. However, its mechanism re-35 35 mains effective in the form of bound internal conversion (BIC), also called resonance conversion 36 36 because of its resonance character. Let us consider this process in more detail.

38 38 **3. Transition to the subthreshold region of BIC in the ions**

40 In the case of singly charged ions, the ionization potential is $I_a = 12.1 \text{ eV}$ [\[9\],](#page--1-0) and the IC 40 ⁴¹ channel is energetically closed. However, deexcitation occurs mainly through many electronic⁴¹ ⁴² bridges. For the first time this was shown in [\[10\]](#page--1-0) for the 76-eV 235 U isomer, and in [\[11\]](#page--1-0) in the ⁴² 43 case of neutral atoms of 2^{29} Th, under assumption of an isomer energy of 3.5 eV. Calculations 43 ⁴⁴ for singly charged ions of ²²⁹Th were performed in ref. [\[12\].](#page--1-0) More detailed calculations for the ⁴⁴ ⁴⁵ neutral atoms of ²²⁹Th, taking into account mixing of the electronic configurations, were under-
⁴⁵ ⁴⁶ taken in refs. [\[8,13\].](#page--1-0) The results show that the main contribution comes from a few electronic 46 ⁴⁷ transitions, in spite of the high fragmentation of the single-electron levels. For this reason, BIC ⁴⁷

зэрэг тогтоосоо нь тогтоосоо тогтоосоо тогтоосоо тогтоосоо тогтоосоо тогтоосоо тогтоосоо тогтоосоо тогтоосоо т
Видео нь тогтоосоо т

 17 and 17 37 Download English Version:

<https://daneshyari.com/en/article/8182782>

Download Persian Version:

<https://daneshyari.com/article/8182782>

[Daneshyari.com](https://daneshyari.com/)