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a  b  s  t  r  a  c  t

Net  ecosystem  exchange  of  CO2 (NEE)  over  a temperate  peatland  in  northwestern  Turkey  was  directly
measured  using  the  eddy  covariance  (EC)  method  for 590  days.  Both  the response  variables  of  diurnal
and  nocturnal  NEE  (NEEd and Reco-n) and  the  explanatory  variables  of  latent  heat  (LE),  relative  humidity
(RH),  and  atmospheric  CO2 and H2O concentrations  (AtmCO2 and  AtmH2O)  were  denoised  with  discrete
wavelet  transform  (DWT)  using  coiflet  (coif10-6).  Denoised  NEE  fluxes  and  their  temporal  components
were  modeled  using  multiple  linear  regression  (MLR),  polynomial  regression  (PR)  and  artificial  neural
network  (ANN)  models  as a  function  of LE,  RH, AtmCO2, AtmH2O,  air temperature  (Tair),  day  of  year
(DOY),  and  local  time.  Peak  NEEd flux,  and  peak  Reco-n efflux  were  −0.37  mg  CO2 m−2 s−1 in  late  July  and
0.27  mg CO2 m−2 s−1 in  mid-August.  Mean  annual  NEE  was  estimated  at −1157  g  CO2 m−2 which  is  in
agreement  with  previous  results  of peatland  studies.  The  use  of DWT-augmented  ANN,  MLR  and  PR
models  significantly  increased  predictive  power  and  reduced  uncertainties  in  predicting  the  temporal
dynamics  of the  biosphere–atmosphere  CO2 exchange,  relative  to the  models  without  DWT  denoising.
Out  of  28  DWT-augmented  ANNs,  multilayer  perceptron  (MLP)  and  recurrent  network  (RN)  models  were
the best  diurnal  and  nocturnal  ones,  respectively,  based  on  accuracy  metrics  derived  from  training,  cross-
validation  and  independent  validation.  Among  the  DWT-based  ANN,  MLR  and  PR  models,  diurnal  MLP
and nocturnal  MLR  outperformed  the others.  Wavelet-augmented  ANN  and  MLR  models  appear  to  be  a
promising  tool  to  quantify  diurnal  and  nocturnal  NEE  dynamics,  respectively.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A  better understanding of spatio-temporal dynamics of carbon
(C) sources and sinks under human-induced disturbances neces-
sitates a better quantification and partitioning of long-term net
ecosystem exchange of CO2 (NEE) into flux and temporal compo-
nents. Such quantitative estimates may  assist in a better tailoring of
preventive and mitigative measures in a changing global environ-
ment (Wali et al., 1999; Baldocchi, 2008; Evrendilek et al., 2011).
Continuous eddy covariance (EC) measurements across different
ecosystems of the world play a vital role in elucidating magni-
tude, trajectory, and diel-to-interannual variability of NEE fluxes,
particularly, when used with process-based (mechanistic) and/or
data-driven models to interpolate NEE dynamics over a given
spatio-temporal resolution.

However, analyzing EC time-series data is challenging as these
signals include meteorological and instrumental noises that need
to be decomposed from ecologically meaningful signals, and
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thus, there are always gaps of a differing time length in filtered
EC datasets (Falge et al., 2001; Papale et al., 2006; Richardson
and Hollinger, 2007). In response to these challenges, numerous
approaches such as process-based models, look-up tables, multiple
regression models, stochastic gap-filling algorithms, and artificial
neural networks (ANNs) have been developed to estimate NEE
(Papale and Valentini, 2003; Grinsted et al., 2004; Reichstein et al.,
2005; He et al., 2006). An analysis of comparative performances of
15 gap-filling techniques by Moffat et al. (2007) showed that ANNs
outperformed the other techniques.

On the other hand, discrete wavelet transform (DWT)  decom-
poses a signal concurrently into time and frequency domains with
high and low resolutions (Torrence and Compo, 1998; Grinsted
et al., 2004). Separation of a signal into high and low resolutions
enables fine and coarse scale features to be captured in the signal,
respectively. To the author’s best knowledge, wavelet denoising has
not been applied to long-term EC measurements to augment both
multiple (non-)linear regression models and ANNs in quantifying
diurnal and nocturnal dynamics of NEE. The objective of this study
was therefore to model diurnal and nocturnal NEE fluxes over a
temperate peatland based on wavelet-augmented ANNs and multi-
ple (non-)linear regression models of long-term EC measurements
between day of year (DOY) 193 in 2010 and DOY 51 in 2012.
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2. Materials and methods

2.1. Study area

Yenicaga peatland is located at an altitude of 988 m above sea
level in the northwestern Black Sea region of Turkey. The prevail-
ing climate in the study area is cool temperate with mean annual
precipitation, evapotranspiration (ET) and air temperature (Tair) of
538 mm,  1200 mm and 13.6 ◦C, respectively. About 40% and 30% of
the mean annual rainfall are received in the summer and spring sea-
sons, respectively. Plant functional type of the study area is mostly
grassland used as a pasture with vegetation height of about 0.6 m.

2.2. Data acquisition

The net ecosystem exchange of CO2 flux densities (NEE,
mg CO2 m−2 s−1) between the biosphere and atmosphere in
Yenicaga peatlands was measured using a 3-m EC flux tower
between DOY 193 (12 July 2010 17:00) and DOY 51 (20 February
2012 16:00). An open-path CO2/H2O gas analyzer (LI-7500, Licor
Inc., Lincoln, NB, USA), a 3-D sonic anemometer/thermometer
(CSAT3, Campbell Scientific Inc., Logan, UT, USA), and a data log-
ger (CR3000, Campbell Scientific Inc.) were used to continuously
measure the three wind components and the scalar components
at a sampling rate of 10 Hz. Then, latent (LE, W m−2) fluxes, and
atmospheric CO2 and H2O concentrations (AtmCO2, mg  m−3; and
AtmH2O, g m−3, respectively) were estimated. EC-measured flux
densities were adjusted for influences of variations in air density
on NEE and LE fluxes using the standard Webb–Leuning (WPL) cor-
rection (Webb et al., 1980) and block-averaged over one hour (h) via
the online flux computation. Air temperature (Tair, ◦C) and relative
humidity (RH, %) were measured using a HMP45C probe (Vaisala,
Finland). Positive or negative NEE values measured indicate fluxes
to the atmosphere (carbon source) or to the biosphere (carbon sink),
respectively.

Rates of NEE between the biosphere and the atmosphere are
governed by net biome productivity (NBP), total ecosystem respi-
ration (Reco), and human-induced disturbances (Chapin et al., 2002;
Reichstein et al., 2005).

(Ra + Rh)
Reco

= EC-measured nocturnal NEE = Reco-n

where Reco refers to the rate of total CO2 efflux to the atmosphere by
both autotrophic (Ra) and heterotrophic respiration (Rh). NEE is the
net C balance between photosynthetic CO2 gain and respiratory CO2
losses from plants and animals. Eddy covariance-measured noc-
turnal NEE was assumed to be equal to Reco at night (Reco-n) as GPP
ceases at night. Effluxes of Reco-n can also be extrapolated to daytime
to estimate diurnal Reco (Reco-d) as a function of closely associated
predictors which can in turn be used to derive GPP values.

2.3. Data processing

Data processing consisted of (1) the removal of missing values,
and spikes for NEE, LE, friction velocity (u*), RH, AtmCO2, AtmH2O,
and Tair; (2) temporal partitioning; and (3) DWT  denoising. First,
spikes in hourly mean values of the EC dataset were rejected when
NEE, LE, and u* fell outside the minimum and maximum limits rec-
ommended in the related literature as follows (Olson et al., 2004;
He et al., 2006; Papale et al., 2006; Thomas et al., 2011):

NEE > 1.76 or <−1.76 mg  CO2 m−2 s−1 (where
1 �mol  CO2 m−2 s−1 ≈ 0.044 mg  CO2 m−2 s−1); LE > 700 or
<−100 W m−2; and u* > 6 or < 0 m s−1.

Latent heat fluxes measured by EC were converted into equiva-
lent ET rates (mm  h−1) when necessary as follows:

ET =
(

3600 × LE
�LE(Tair) × �w

)

�LE(Tair) = (2501 − 2.37 × Tair) × 103

where �LE(Tair) is the latent heat of vaporization of water (amount
of energy to evaporate a unit weight of water) (J kg−1) as a func-
tion of Tair. pw is water density (∼1 Mg  m−3), and 3600 is a time
conversion coefficient for s h−1.

Second, the non-gap-filled dataset after the removal of erro-
neous values was  temporally partitioned into daytime (diurnal)
and nighttime (nocturnal) datasets according to mean negative and
positive NEE values obtained between 9:00 and 17:00, and between
18:00 and 8:00, respectively. Finally, diurnal and nocturnal datasets
of NEE, LE, RH, AtmCO2, and AtmH2O were separately subjected to
DWT denoising based on the orthogonal basis of Coiflet with order
of 10 and decomposition level of six (coif10-6) using KyPlot 2.0
(Kyence Lab. Inc., Tokyo, Japan).

2.4. Wavelet denoising and neural networks

Unlike Fourier transform, DWT  converts original time series
from the time domain into the concurrent time/frequency domain
as father wavelets (the low frequency components) and mother
wavelets (the high frequency components) without loss of tem-
poral information (Kang and Lin, 2007; Koirala et al., 2010). In
the present study, Coiflet (order = 10) was used as the mother
wavelet for denoising. Coiflets are a nearly symmetrical wavelet
basis, unlike Daubechies wavelets, that has vanishing moments
for wavelet function and scaling function and maintains the typ-
ical shape of the diurnal and seasonal cycles (Huang and Hsieh,
2002). Each of the datasets with and without DWT  denoising for
both nighttime and daytime was fed into a total of 28 ANNs. The
ANNs run with and without denoising consisted of a combination
of 10 different topologies (generalized feedforward – GFF; linear
regression – LR; multilayer perceptron – MLP; MLP  with principal
component analysis – PCA; probabilistic neural network – PNN;
radial basis function – RBF; classification support vector machine
– SVM; time-delay network – TDNN; recurrent network – RN; and
time-lag recurrent network – TLRN); three hidden layers (no hidden
layer, 1 hidden layer, and 2 hidden layers); two learning algo-
rithms (Momentum – M – versus Levenberg–Marquardt – L); and
two learning modes (batch – B – versus online – O) (Table 1). The
nine temporal (feedforward or feedback) ANNs used in this study
(TDNN, TLRN, and RN) are based on the backpropagation through
time (BPTT) algorithm that uses an adaptive memory structure of
past time periods to predict the future. The 19 static (feedforward)
ANNs are based on the backpropagation (BP) algorithm that does
not use feedbacks or delays.

Levenberg–Marquardt algorithm composed of first order error
BP and second order Newton algorithms runs the training to deter-
mine a set of weights that minimize the error for all samples in the
training set (Wilamowski et al., 2008). Momentum algorithm util-
izes a locally adaptive approach with a memory term to continue
past local minima, and thus, to speed up training time (Haykin,
1999). Batch learning uses multiple passes repeatedly processing
previously used training set and new examples and considers all
the training instances at once, whereas online learning uses only
one pass through the entire training set without processing previ-
ously learned data and considers one training instance individually
at a time (Oza, 2005).
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