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Abstract

We study invariant operators in general tensor models. We show that representation theory provides 
an efficient framework to count and classify invariants in tensor models of (gauge) symmetry Gd =
U(N1) ⊗ · · · ⊗ U(Nd). As a continuation and completion of our earlier work, we present two natural 
ways of counting invariants, one for arbitrary Gd and another valid for large rank of Gd . We construct 
bases of invariant operators based on the counting, and compute correlators of their elements. The basis 
associated with finite rank of Gd diagonalizes the two-point function of the free theory. It is analogous to 
the restricted Schur basis used in matrix models. We show that the constructions get almost identical as 
we swap the Littlewood–Richardson numbers in multi-matrix models with Kronecker coefficients in gen-
eral tensor models. We explore the parallelism between matrix model and tensor model in depth from the 
perspective of representation theory and comment on several ideas for future investigation.
© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Tensor models, whose elementary building block consists of tensorial objects, provide a nat-
ural generalization of matrix models. In theoretical physics, there are various motivations that 
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make the tensor model an interesting system to study. In one corner, the motivation comes from 
a scheme for studying quantum entanglement. From the quantum mechanical point of view, 
d-rank tensor models are associated with the multi-linear symmetry group Gd(N) = U(N1) ⊗
U(N2) ⊗· · ·⊗U(Nd) acting on a tensor product Hilbert space H=HN1 ⊗· · ·⊗HNd

. We know 
that the Hilbert space of a composed physical system is the tensor product of its constituents, 
and quantum correlation among them is an essential aspect of entanglement in quantum me-
chanics [1]. So tensor models naturally describe composite systems. Moreover, gauge invariant 
operators built out of tensors separate the entangled and untangled states of H, so they can be 
viewed as a probe of quantum entanglement measurements [2].

In another corner, tensor models provide a suitable scheme for studying quantum gravity. In-
spired by the success of matrix models in describing two-dimensional quantum gravity [3], tensor 
model was proposed as a framework for describing higher-dimensional random geometry [4–6]. 
Colored tensor models [7,8] and the development of their 1/N -expansion [9–11] have triggered 
an upsurge of the subject and a fast growth in recent years. The introduction of color has served to 
overcome several difficulties that the earlier tensor models had in describing quantum gravity at 
dimensions greater than two. More recently, the colored tensor model have been found in direct 
connection with the AdS2/CFT1 holography, as an alternative formulation of the Sachdev–Ye–
Kitaev (SYK) model [12–21] in which the necessity of quenched disorder is dispensed while 
exhibiting the same large-N behavior [22], see also [23]. Tensor models were also studied in the 
non-perturbative definition of non-abelian tensor fields [24], where interesting connections with 
matrix factorizations and dynamical Yang–Baxter maps were found.

The simplest yet nontrivial tensor model is the matrix model, which has been studied exten-
sively in the context of AdS/CFT correspondence. In the matrix model, the use of orthogonal 
bases for two-point functions (first for the BPS-sector [25] and then for general bosonic sectors 
[26–32] and for including gauge field [33] or fermions [34]) (see also [35])) was extremely use-
ful for computations in N = 4 super Yang–Mills theory within the so-called non-planar regime, 
which involves heavy operators dual to excited D-branes and macroscopic solitonic objects in 
the string theory side [36–40].

In all these situations, the colored tensor model is considered as a n-dimensional quantum 
field theory (which, as originally envisioned, may eventually describe spacetime and matter in 
D ≥ n dimensions), where the fundamental degrees of freedom are tensor fields transforming as a 
suitable (not necessarily irreducible) representation under an internal symmetry Gd . While there 
are issues of the tensor model pertinent to the quantum field theory such as renormalizability 
[41], there are also issues associated with the internal symmetry Gd that need to be understood 
first. These issues are largely related to the representation theory, so we will for simplicity take 
the colored tensor model to be zero-dimensional. The aim of this paper is to undertake detailed 
study of this zero-dimensional tensor model, expanding our earlier work [42].

This paper is meant to be a comprehensive revision and completion of our earlier work [42]. 
Thus, there is a significant overlap with the first paper. Nevertheless, the present work ties up all 
the loose ends of the former by adding new proofs (like eq. (3.19) which shows the match be-
tween the finite and the large N operator counting, or the orthogonality of the proposed operator 
basis in all the labels by direct computation of the correlators in eq. (5.15)), further examples and 
clarifications. Section 6 is also new.

The paper is organized as follows. We first recapitulate aspects of basic representation the-
ory relevant for analysis in later sections. We then count physical observables, viz. invariants of 
tensor fields, in section 3, following the steps of [43] and [44]. Kronecker coefficients appear 
naturally in the counting. We show that representation theory actually provides two natural ways 
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