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Abstract

These notes aim to provide a concise pedagogical introduction to some important applications of the renormaliza-
tion group in statistical physics. After briefly reviewing the scaling approach and Ginzburg—Landau theory for criti-
cal phenomena near continuous phase transitions in thermal equilibrium, Wilson’s momentum shell renormalization
group method is presented, and the critical exponents for the scalar ®* model are determined to first order in a dimen-
sional € expansion about the upper critical dimension d. = 4. Subsequently, the physically equivalent but technically
more versatile field-theoretic formulation of the perturbational renormalization group for static critical phenomena is
described. It is explained how the emergence of scale invariance connects ultraviolet divergences to infrared singular-
ities, and the renormalization group equation is employed to compute the critical exponents for the O(n)-symmetric
Landau—Ginzburg—Wilson theory to lowest non-trivial order in the € expansion. The second part of this overview is
devoted to field theory representations of non-linear stochastic dynamical systems, and the application of renormaliza-
tion group tools to critical dynamics. Dynamic critical phenomena in systems near equilibrium are efficiently captured
through Langevin stochastic equations of motion, and their mapping onto the Janssen—De Dominicis response func-
tional, as exemplified by the field-theoretic treatment of purely relaxational models with non-conserved (model A) and
conserved order parameter (model B). As examples for other universality classes, the Langevin description and scaling
exponents for isotropic ferromagnets at the critical point (model J) and for driven diffusive non-equilibrium systems
are discussed. Finally, an outlook is presented to scale-invariant phenomena and non-equilibrium phase transitions
in interacting particle systems. It is shown how the stochastic master equation associated with chemical reactions or
population dynamics models can be mapped onto imaginary-time, non-Hermitian “quantum” mechanics. In the con-
tinuum limit, this Doi—Peliti Hamiltonian is in turn represented through a coherent-state path integral action, which
allows an efficient and powerful renormalization group analysis of, e.g., diffusion-limited annihilation processes, and
of phase transitions from active to inactive, absorbing states.
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1. Introduction group (RG) has had a profound impact on modern statis-
tical physics. Not only do renormalization group meth-
ods provide a powerful tool to analytically describe and
quantitatively capture both static and dynamic critical
phenomena near continuous phase transitions that are
governed by strong interactions, fluctuations, and cor-
relations, they also allow us to address physical prop-

Since Ken Wilson’s seminal work in the early 1970s
[1], based also on the groundbreaking foundations laid
by Leo Kadanoff, Ben Widom, Michael Fisher [2],
and others in the preceding decade, the renormalization
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erties associated with the emerging generic scale invari-
ance in certain entire thermodynamic phases, many non-
equilibrium steady states, and in relaxation phenomena
towards either equilibrium or non-equilibrium station-
ary states. In fact, the renormalization group presents
us with a conceptual framework and mathematical lan-
guage that has become ubiquitous in the theoretical de-
scription of many complex interacting many-particle
systems encountered in nature. One may even argue
that the fundamental RG notions of universality and rel-
evance or irrelevance of interactions and perturbations,
and the accompanying systematic coarse-graining pro-
cedures are of crucial importance for any attempt at cap-
turing natural phenomena in terms of only a few meso-
or macroscopic degrees of freedom, and thus also form
the essential philosophical basis for any computational
modeling, including Monte Carlo simulations.

In these lecture notes, I aim to give a pedagogical
introduction and concise overview of first the classic
applications of renormalization group methods to equi-
librium critical phenomena, and subsequently to the
study of critical dynamics, both near and far away from
thermal equilibrium. The second half of this article
will specifically explain how the stochastic dynamics of
interacting many-particle systems, mathematically de-
scribed either through (coupled) non-linear Langevin or
more “microscopic” master equations, can be mapped
onto dynamical field theory representations, and then
analyzed by means of RG-improved perturbative expan-
sions. In addition, it will be demonstrated how exploit-
ing the general structure of the RG flow equations, fixed
point conditions, and prevalent symmetries yields cer-
tain exact statements. Other authors contributing to this
volume will discuss additional applications of renormal-
ization group tools to a broad variety of physical sys-
tems and problems, and also cover more recently devel-
oped efficient non-perturbative approaches.

2. Critical Phenomena

We begin with a quick review of Landau’s generic
mean-field treatment of continuous phase transitions in
thermal equilibrium, define the critical exponents that
characterize thermodynamic singularities, and then ven-
ture to an even more general description of critical phe-
nomena by means of scaling theory. Next we generalize
to spatially inhomogeneous configurations, investigate
critical infrared singularities in the two-point correlation
function, and analyze the Gaussian fluctuations for the
ensuing Landau—Ginzburg—Wilson Hamiltonian (scalar
Euclidean ®* field theory). This allows us to identify
d. = 4 as the upper critical dimension below which

fluctuations crucially impact the critical power laws. Fi-
nally, we introduce Wilson’s momentum shell renormal-
ization group approach, reconsider the Gaussian model,
discuss the general emerging structure, and at last per-
turbatively compute the fluctuation corrections to the
critical exponents to first order in the dimensional ex-
pansion parameter € = d, —d. Far more detailed exposi-
tions of the contents of this chapter can be found in the
excellent textbooks [3]-[8] and in chap. 1 of Ref. [9].

2.1. Continuous phase transitions

Different thermodynamic phases are characterized by
certain macroscopic, usually extensive state variables
called order parameters; examples are the magnetization
in ferromagnetic systems, polarization in ferroelectrics,
and the macroscopically occupied ground-state wave
function for superfluids and superconductors. We shall
henceforth set our order parameter to vanish in the high-
temperature disordered phase, and to assume a finite
value in the low-temperature ordered phase. Landau’s
basic construction of a general mean-field description
for phase transitions relies on an expansion of the free
energy (density) in terms of the order parameter, natu-
rally constrained by the symmetries of the physical sys-
tem under consideration. For example, consider a scalar
order parameter ¢ with discrete inversion or Z, sym-
metry that in the ordered phase may take either of two
degenerate values ¢. = +|¢o|. We shall see that the fol-
lowing generic expansion (with real coefficients) indeed
describes a continuous or second-order phase transition:
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if the temperature-dependent parameter r changes sign
at T,. For simplicity, and again in the spirit of a regular
Taylor expansion, we let r = a(T — T?), where T de-
notes the mean-field critical temperature. Stability re-
quires that # > 0 (otherwise more expansion terms need
to be added); near the critical point we can simply take
u to be a constant. Note that the external field /, thermo-
dynamically conjugate to the order parameter, explicitly
breaks the assumed Z, symmetry ¢ — —¢.

Minimizing the free energy with respect to ¢ then
yields the thermodynamic ground state. Thus, from
f'(¢) = 0 we immediately infer the equation of state

u
WT,¢) = r(D)¢+ 2 ¢, 2
and the minimization or stability condition reads 0 <

@) =r+3 #*. At T = T?, (2) reduces to the critical
isotherm W(T?, ¢) = §¢3. For r > 0, the spontaneous
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