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We consider the gravitational radiation in conformal gravity theory. We perturb the metric from flat 
Mikowski space and obtain the wave equation after introducing the appropriate transformation for 
perturbation. We derive the effective energy-momentum tensor for the gravitational radiation, which 
can be used to determine the energy carried by gravitational waves.
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1. Introduction

The detection of gravitational waves (GWs) by the LIGO Col-
laboration is a milestone in GW research and opens a new win-
dow to probe general relativity (GR) and astrophysics [1–4]. Future 
space-borne detectors will offer access to an unprecedented signal 
sensitivity [5], thus it is worthwhile to explore GWs in alterna-
tive theories of gravity. Gravitational wave were considered in f (R)

theories [6–17], in scalar-tensor theories [18–20], in f (T ) theories 
[21] and in fourth-order gravity [22]. The evolution equation for 
gravitational perturbation in four dimensional spacetime in pres-
ence of a spatial extra dimension has been derived in [23]. The 
linear perturbation of higher-order gravities has been discussed in 
[24]. Following the original work by Weyl [25] (for review, see 
[26]), conformal gravity (CG), as a possible candidate alternative 
to GR, attracts much attention. It can give rise to an accelerated 
expansion [27]. It was tested with astrophysical observations and 
had been confirmed that it does not suffer from an age problem 
[28]. It can describe the rotation curves of galaxies without dark 
matter [29]. Cosmological perturbations in CG were investigated in 
[30,31]. The particle content of linearized conformal gravity was 
considered in [32]. It had been shown that CG accommodates well 
with currently available SNIa and GRB samples [33–35]. A series 
of dynamical solutions in CG were found in [36]. Mass decompo-
sition of the lens galaxies of the Sloan Lens Advanced Camera for 
Surveys in CG was discussed in [37]. Recently it was indicated that 
conformal gravity can potentially test well against all astrophysi-
cal observations to date [38]. It has been shown that CG can also 
give rise to an inflationary phase [39]. The holographic two-point 
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functions of four dimensional conformal gravity was computed in 
[40]. It was shown that four dimensional conformal gravity plus 
a simple Neumann boundary condition can be used to get the 
semiclassical (or tree level) wavefunction of the universe of four 
dimensional asymptotically de-Sitter or Euclidean anti-de Sitter 
spacetimes [41]. A simple derivation of the equivalence between 
Einstein and Conformal Gravity (CG) with Neumann boundary con-
ditions was provided in [42]. It was argued that Weyl action should 
be added to the Einstein–Hilbert action [43].

CG is also confronted with some challenges. It has been shown 
that CG does not agree with the predictions of general relativity in 
the limit of weak fields and slow motions, and it is therefore ruled 
out by Solar System observations [44]. It suggested that without 
dark matter CG can not explain the properties of X-ray galaxy 
clusters [45]. It is not able to describe the phenomenology of grav-
itational lensing [46]. The cosmological models derived from CG 
are not likely to reproduce the observational properties of our Uni-
verse [47].

In this paper, we will consider gravitational radiation in CG. 
We aim to find the equations of gravitational radiation and the 
energy-momentum tensor of the GWs. These results will be valu-
able for future observations of GWs to test gravity theories alter-
native to GR.

This paper is organised as follows. We begin with a review of 
the CG theory. In Section 3, we consider GWs in CG. In Section 4, 
we will discuss the energy-momentum tensor of the GWs. Finally, 
we will briefly summarize and discuss our results.

2. Basic equations for conformal gravity

Besides of the general coordinate invariance and equivalence 
principle structure of general relativity, CG possesses an additional 
local conformal symmetry in which the action is invariant under 
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local conformal transformations on the metric: gμν → e2α(x) gμν . 
This symmetry forbids the presence of any �

√−gd4x term in the 
action, so CG does not suffer from the cosmological constant prob-
lem [48]. Under such a symmetry, the action of CG in vacuum is 
given by

I = −αg

∫
CμνκλCμνκλ

√−gd4x (1)

= −αg

∫ [
Rμναβ Rμναβ − 2Rμν Rμν + 1

3
R2

]√−gd4x

= −2αg

∫ [
Rμν Rμν − 1

3
R2

]√−gd4x,

where Cμνκλ the Weyl tensor and αg is a dimensionless cou-
pling constant, unlike general relativity. To obtain the last equa-
tion, we have taken into account the fact that the Gauss–Bonnet 
term, Rμναβ Rμναβ − 4Rμν Rμν + R2, is a total derivative in four-
dimension spacetime. Here we take the signature of the metric 
as (−, +, +, +) and the Rieman tensor is defined as Rλ

μνκ =
∂κ	λ

μν − ∂ν	λ
μκ + 	α

μν	λ
ακ − 	α

μκ	λ
αν from which the Ricci 

tensor is obtained Rμν = gαβ Rαμβν , and the Ricci scalar is de-
fined as R = gμν Rμν . If to include the matter in the action, the 
energy-momentum tensor of matter should also be Weyl invariant. 
Due to the conformal invariance one can choose a gauge in which 
the scalar field is constant. Then it is obvious that the Ricci scalar 
term belongs to the gravity part of the theory and cannot be dis-
carded in the vacuum case. The only way this can be achieved is 
by choosing the vacuum expectation value of the scalar as zero. 
But this means that the fermion mass term also vanishes, which 
means that one can consider only massless matter with this the-
ory. Hence, one should either say that one only considers massless 
matter or one has to take the Ricci term into account (for de-
tails see [49]) in CG. The most general local matter action for a 
generic scalar and spinor field coupled conformally to gravity has 
been proposed in [49]. Here we focus on the vacuum case corre-
sponding to conformal gravity with massless matter. Variation with 
respect to the metric generates the field equations

4αgWμν = 0, (2)

where

Wμν = − 1

6
gμν R;λ

;λ + 2

3
R;μ;ν + R ;λ

μν;λ − R ;λ
λν;μ − R ;λ

λμ;ν

+ 2

3
R Rμν − 2RμλR λ

ν + 1

2
gμν Rλκ Rλκ − 1

6
gμν R2. (3)

Since W μν is obtained from an action that is both conformal 
invariant and general coordinate invariant, it is traceless and 
kinematically covariantly conserved: W μ

μ ≡ gμν W μν = 0 and 
W μν

;ν = 0.

3. Gravitational waves in conformal gravity

Here we are interested in vacuum GWs of CG. Recently the GWs 
of CG with matter are discussed in [50], however, the results in 
vacuum case cannot be derived simply from the non-vacuum case 
by letting the energy-momentum tensor as zero. The linearized 
framework provides a natural way to study gravitational waves, 
which is a weak-field approximation that assumes small deviations 
from a flat background

gμν = ημν + hμν, (4)

where |hμν | ∼ ε which is a small parameter. We will consider 
terms up to O(ε). Thus the inverse metric is gμν = ημν − hμν

where the indices are raised by used the Minkowski metric. To the 
first-order, the covariant derivative of any perturbed quantity will 
be the same as the partial derivative, so the connection and the 
Riemann tensor are, respectively, given by

	
(1)ρ

μν = 1

2
ηρλ(∂μhνλ + ∂νhμλ − ∂λhμν), (5)

R(1)λ
μνρ = 1

2
(∂μ∂ρhλ

ν + ∂λ∂νhμρ − ∂μ∂νhλ
ρ − ∂λ∂ρhμν). (6)

Contracting the Riemann tensor gives the Ricci tensor

R(1)
μν = 1

2
(�hμν + ∂μ∂νh − ∂μ∂λhλ

ν − ∂ν∂λhλ
μ), (7)

where the d’Alembertian operator is � = ημν∂μ∂ν . Contracting the 
Ricci tensor gives the first-order Ricci scalar

R(1) = �h − ∂μ∂νhμν. (8)

Inserting Eqs. (7) and (8) into (3) and retaining terms to the first-
order, we obtain

W (1)
μν = −1

6
ημν�R(1) + 2

3
R(1)

,μν +�R(1)
μν − R(1) ,λ

λν,μ − R(1) ,λ
λμ,ν .

(9)

In general relativity, if we define the trace-reversed perturba-
tion h̄μν = hμν − 1

2 ημνh and impose the Lorenz gauge ∂μh̄μν = 0, 
the linearized vacuum Einstein field equations reduce to the wave 
equation

�h̄μν = 0. (10)

We can apply this similar standard reasoning within the CG frame-
work and find a quantity h̄μν that satisfies a wave equation when 
linearizing the field equations (3). The rank-two tensors in lin-
earized conformal gravity are: hμν , ημν , R(1)

μν , and ∂μ∂ν . In order 
to eliminate R(1)

μν , we will try the simper combination ημν R(1) . The 
linearized field equations (3) is forth-order, we hope to get second-
order wave equations which can be easily solved, so we look for a 
solution with the following form

h̄μν = �hμν + αημν�h + βημν R(1), (11)

where α and β are constants. Taking the trace of Eq. (11) yields

h̄ = (4α + 1)�h + 4βR(1). (12)

So we can eliminate hμν in terms of h̄μν to give

�hμν = h̄μν − α

4α + 1
ημν h̄ − β

4α + 1
ημν R(1), (13)

and

�h = 1

4α + 1
h̄ − 4β

4α + 1
R(1). (14)

Inserting Eqs. (13) and (14) into �R(1)
μν yields

�R(1)
μν = 1

2

[
�h̄μν − αημν

4α + 1
�h̄ − ∂μ∂λh̄λν − ∂ν∂λh̄λμ

+ 2α + 1

4α + 1
∂μ∂ν h̄ − 2β

4α + 1
∂μ∂ν R(1) − βημν

4α + 1
�R(1)

]
.

(15)
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