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We calculate the gravitational radiation background generated from boson star binaries formed in locally 
dense clusters with formation rate tracked by the regular star formation rate. We compute how the
frequency window in gravitational waves is affected by the boson field mass and repulsive self-coupling, 
anticipating constraints from EPTA and LISA. We also comment on the possible detectability of these 
binaries.
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1. Introduction

The recent detection of gravitational waves (GW) by LIGO and 
VIRGO have opened up a new window for our understanding of 
the physical properties of the universe [1]. Probing the energy den-
sity of the stochastic Gravitational Wave Background (GRB) formed 
by the superposition of a large number of individual gravitational 
wave merger events is a long term goal of the next generation of 
GW detectors. It is thus of great interest to investigate different 
potential sources of GRBs and how to distinguish between their 
potential observational signatures. In this letter, we compute the 
GRB of an important class of hypothetical objects, merging bina-
ries of Exotic Compact Objects (ECOs) composed of self-interacting 
scalar field configurations known as boson stars (BSs). Such ob-
jects were first proposed in the late 1960s [2] and further studied 
in the 1980s and 1990s [3–6], but are now experiencing a revival 
due to their potential role as dark matter candidates [7] and as 
remnants of early universe physics [8]. The gravitational wave pro-
duction from individual events of the merger of two boson stars 
has been studied in [9] and [10], for example. A preliminary esti-
mate of the GRB in boson-star binary mergers was given in [11].

The success of inflationary cosmology [12] and the discovery 
of the Higgs Boson [13] [14] have opened up the possibility that 
different self-interacting scalar fields might exist in nature. The 
presence of such fundamental scalar fields in the early universe, 
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maybe in dark matter clusters, could have led to their condensa-
tion into self-gravitating compact objects [15–17]. It is quite re-
markable that for a repulsive self-interaction λ|φ|4 and a scalar 
field mass m, such objects have masses MBS ∼ √

λM3
Pl/m2, which, 

for m/λ1/4 ∼ mp , where mp is the proton mass, are parametrically 
equivalent to the Chandrasekhar mass [18].

Indeed, even a free, massive scalar field can generate a self-
gravitating object, supported against gravitational collapse solely 
by quantum uncertainty [2]. This distinguishes them from fermi-
onic compact objects such as neutron stars (NS) and white dwarfs, 
which are prevented from collapse due to degeneracy pres-
sure [19]. Another key difference, important observationally to 
distinguish the two classes of compact objects, is that the sim-
plest BSs do not radiate electromagnetically.

Given the uncertainty in the details of BS formation, and to 
provide a more general analysis, we assume here that BSs were 
formed at a rate that tracks the regular star formation rate, in 
locally-dense dark matter clusters. We will thus adopt this initial 
range of redshifts as a benchmark for our analysis. Our results can 
be extended to arbitrarily large redshifts.

As with their fermionic counterparts, BSs have a critical maxi-
mum mass against central density beyond which they are unstable 
to gravitational collapse into black holes (BHs) [3,20]. In this pa-
per, we treat the two stars in the binary BS system as having the 
same maximum mass and radius, which leads to the two objects 
having the same compactness, defined as C = G N M/R . The GRB 
is typically characterized by the dimensionless quantity �GW( f ), 
the contribution in gravitational radiation in units of the criti-
cal density in a frequency window f and f + δ f to the total 
energy-density of the universe in a Hubble time. By studying their 
gravitational imprints, we hope to gain insight on the properties 
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of these exotic objects, expanding the results of [11] and bringing 
them closer to current and planned observations.

2. Boson star properties

2.1. Isolated boson stars

Very light bosons could form a Bose–Einstein condensate (BEC) 
in the early or late universe through various mechanisms [15–17]. 
Such objects are macroscopic quantum states that are prevented 
from collapsing gravitationally by the Heisenberg uncertainty prin-
ciple in the non-interacting [2] and attractive self-interaction 
case [15], or, in another possibility, through a repulsive self-
interaction that could balance gravity’s attraction [18]. In this 
Letter, we study an Einstein–Klein–Gordon system with the fol-
lowing Lagrangian,

L = √−g

[
|(∂φ)|2 − m2|φ|2 − 1

2
λ|φ|4

]
, (1)

where φ is a complex scalar field carrying a global U (1). Real 
scalar fields can also form gravitationally-bound states, but these 
are time-dependent and have different properties [21]. Colpi et 
al. showed that the maximum mass of a spherically-symmetric BS 
with repulsive self-interaction is given by [18]

Mmax∗ ∼ 0.22 M2
p α1/2

m
≈ 0.06

√
λM3

p

m2
, (2)

where the rescaled coupling α is defined as α ≡ λ M2
p/(4π m2). 

For a boson star with a repulsive self-interaction, the radius can be 
estimated to be

R∗ ∼
√

λ√
G Nm2

. (3)

The compactness of boson stars is discussed in many references 
such as [22,7]. We note that the compactness and mass of the 
stars are especially relevant for binary GW events. Different forma-
tion mechanisms have been discussed in Refs. [15–17]. However, 
since we are focussing here on the gravitational radiation back-
ground, we need not worry about specific formation mechanisms 
that lead to highly compact BSs. We will assume they exist and 
compute their contribution to the GRB. We also note that if one 
assumes the complex scalar φ to be responsible for the dark mat-
ter in the Bullet Cluster, Ref. [23] shows that the constraint on the 
dark matter cross section [24–26] can be translated into a bound 
on the boson’s self-coupling, because the relative velocity of the 
Bullet Cluster is higher than the sound speed of the condensate. 
The translated bound on the self-interaction strength is

λ� 10−11
( m

eV

)3/2
. (4)

We note in passing that Ref. [23] shows that BEC requires light 
scalars m < 1 eV. However, the bound is based on the inter-particle 
spacing estimated from the average density of dark matter in the 
Universe. Since in the absence of a fundamental theory the exact 
formation process of boson stars remain unclear, we consider the 
possibility of their formation due to a large local density fluctu-
ation. Therefore, we do not worry about the bound on the scalar 
mass. In what follows, we saturate the Bullet Cluster bound and 
parametrize the boson star mass effectively as

M∗ = xMmax∗ = 3.1 × 1011 x

(
eV

m

)5/4

M�, (5)

where x is the fraction between boson star mass and the maxi-
mum stable mass, and the radius will be given by,

R∗ = y

√
λ√

G Nm2
= 1.1 × 107 y

(
eV

m

)5/4

R�, (6)

where y is the fraction or multiple of the star radius from Eq. (3). 
From Eqs. (5) and (6) we obtain the compactness of these boson 
stars as

C∗ = G N M∗
C∗

= 0.06 ×
(

x

y

)
. (7)

2.2. Boson star binaries

We briefly describe the properties of boson star binaries that 
are relevant for the calculation of gravitational radiation. In what 
follows, we assume a conservative model for the estimation of the 
binary formation rate, which tracks the star formation rate (SFR) of 
luminous stars. Empirically, the luminous star-formation rate can 
be parametrized as a function of redshift z and stellar mass M
[27], in units of yr−1 Mpc−3 as

SFR(z, M) = SFR0

(
M�
M

)
a eb(z−zm)

a − b + b ea(z−zm)
. (8)

The parameters SFR0, zm , a, and b are all determined by fitting to 
observations such as gamma-ray burst rates and the galaxy lumi-
nosity function. We adopt the fit from gamma-ray bursts from [28]. 
We further parameterize the efficiency of the binary boson star for-
mation as a fraction of SFR(z, M), denoted as fBBS ≤ 1. We stress 
that this effective parametrization does not assume a specific bo-
son star formation mechanism nor a similarity between that and 
luminous star formation. The boson star binary formation rate is, 
for a boson star of mass M∗ and formation redshift z f ,

RBBS(z f , M∗) = fBBS × SFR(z f , M∗). (9)

Since we do not need all of the binaries to survive today to leave 
their gravitational radiation imprint, we calculate the merger rate 
at redshift z, which is mainly determined by the binary formation 
rate at redshift z f . On the other hand, the larger the binary sep-
aration at formation, the less likely they would have successfully 
merged, due to gravitational perturbations from other sources. Fol-
lowing Ref. [29], we use an appropriately normalized weight func-
tion p(	t) to account for the merger efficiency, where 	t is the 
time delay from formation of the binary to coalescence,

Rm(t, M∗, fBBS) =
	tmax∫

	tmin

RBBS(t − 	t, M∗) p(	t) d	t. (10)

Here, 	tmin is the minimum time between formation and coales-
cence, and 	tmax is determined by the maximum initial separation 
which allows for binary formation. As we will see below, the result 
is not sensitive to the precise choice of 	tmax . We will comment 
on a suitable 	tmin for this integral in the following section. We 
relate redshift to cosmic time with the approximate formula from 
Ref. [30],

t(z) = 2/H0

1 + (z + 1)2
, (11)

where H0 is the Hubble constant today. Next, let us estimate 
p(	t). For a pair of stars A and B, their initial separation a de-
fines a sphere inside which the number of stars is N(a) = ρπa3/6. 
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